全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

区间值决策系统下最短约简算法的研究
Research on Shortest Reduction Algorithm in Interval-Valued Systems

DOI: 10.12677/CSA.2023.135105, PP. 1074-1082

Keywords: 粗糙集,最短约简,二进制差别矩阵,区间值决策系统
Rough Set
, Shortest Reduction, Binary Discernibility Matrix, Interval-Valued Decision Systems

Full-Text   Cite this paper   Add to My Lib

Abstract:

属性约简可以选出保持分类能力不变的属性子集,而最短约简不仅可以选出保持分类能力不变的属性子集,还可以最大程度地删除冗余属性、压缩决策表,选出最优的属性子集。本文在区间值决策系统的数据背景下,分别对针对决策属性的全部决策类和特定决策类构建二进制差别矩阵,结合SRA算法分别提出了基于二进制差别矩阵的最短约简算法和特定类最短约简算法。为了验证算法的有效性,选取8组UCI数据集分别从算法的约简结果长度和约简效率两方面进行对比,实验结果证明了算法的可行性和有效性。
Attribute reduction can select a subset of attributes that maintains the classification ability, while shortest reduction can not only select a subset of attributes that maintains the classifica-tion ability, but also delete redundant attributes and compress decision tables to select the optimal subset of attributes. In this paper, based on the data background of interval-valued decision systems, binary discernibility matrix were constructed for all decision classes and specific decision classes, and the shortest reduction algorithm and the specific class shortest reduction algorithm based on binary discernibility matrix were proposed, respectively, combined with the SRA algorithm. To verify the effectiveness of the algorithm, 8 UCI datasets were selected for comparison from the perspective of the length of the reduction result and the efficiency of the reduction algorithm. The experimental results prove the feasibility and effectiveness of the al-gorithm.

References

[1]  Pawlak, Z. (1982) Rough Sets. International Journal of Computer and Information Sciences, 11, 341-356.
https://doi.org/10.1007/BF01001956
[2]  苗夺谦, 胡桂荣. 知识约简的一种启发式算法[J]. 计算机研究与发展, 1999, 36(6): 681-684.
[3]  Wang, C.Z., Huang, Y., Ding, W.P. and Cao, Z.H. (2021) Attribute Reduction with Fuzzy Rough Self-Information Measures. Information Sciences, 549, 68-86.
https://doi.org/10.1016/j.ins.2020.11.021
[4]  Lin, T.Y. and Yin, P. (2004) Heuristically Fast Finding of the Shortest Reducts. 4th International Conference, RSCTC 2004, Uppsala, 1-5 June 2004, 465-470.
https://doi.org/10.1007/978-3-540-25929-9_55
[5]  Lv, Y.J. and Liu, N.X. (2007) Application of Quantum Genetic Algorithm on Finding Minimal Reduct. IEEE International Conference on Granular Computing (GRC 2007), San Jose, 2-4 November 2007, 725-728.
https://doi.org/10.1109/GrC.2007.87
[6]  Zhou, J., Miao, D.Q., Feng, Q.R. and Sun, L.J. (2009) Research on Complete Algorithms for Minimal Attribute Reduction. 4th International Conference, RSKT 2009, Gold Coast, 14-16 July 2009, 152-159.
https://doi.org/10.1007/978-3-642-02962-2_19
[7]  Rodriguez-Diez, V., Martinez-Trinidad. J.F., Carras-co-Ochoa, J.A., Lazo-Cortes, M.S. and Olvera-Lopez, J.A. (2020) MinReduct: A New Algorithm for Computing the Shortest Reducts. Pattern Recognition Letters, 138, 177-184.
https://doi.org/10.1016/j.patrec.2020.07.004
[8]  Gonzalez-Diaz, Y., Martinez-Trinidad, J.F., Carrasco-Ochoa, J.A. and Lazo-Cortes, M.S. (2022) Algorithm for Computing All the Shortest Reducts Based on a New Pruning Strategy. Information Sciences, 585, 113-126.
https://doi.org/10.1016/j.ins.2021.11.037
[9]  Felix, R. and Ushio, T. (1999) Rough Sets-Based Machine Learning Using a Binary Discernibility Matrix. Proceedings of the 2nd International Conference on Intelligent Processing and Manufacturing of Materials, Honolulu, 10-15 July 1999, 299-305.
https://doi.org/10.1109/IPMM.1999.792493
[10]  支天云, 苗夺谦. 二进制可辨矩阵的变换及高效属性约简算法的构造[J]. 计算机科学, 2002, 29(2): 140-142, F004.
[11]  Yao, Y.Y. and Zhao, Y. (2009) Discernibility Matrix Simplification for Constructing Attribute Reducts. Information Sciences, 179, 867-882.
https://doi.org/10.1016/j.ins.2008.11.020
[12]  Lazo-Cortes, M.S., Martinez-Trinidad, J.F., Carrasco-Ochoa, J.A. and Diaz, G.S. (2016) A New Algorithm for Computing Reducts Based on the Binary Discernibility Matrix. Intelligent Data Analysis, 20, 317-337.
https://doi.org/10.3233/IDA-160807
[13]  Zhang, N., Li, B.Z., Zhang, Z.X. and Guo, Y.Y. (2018) A Quick Algorithm for Binary Discernibility Matrix Simplification Using Deterministic Finite Automata. Information, 9, Ar-ticle No. 314.
https://doi.org/10.3390/info9120314
[14]  刘鹏惠, 陈子春, 秦克云. 区间值信息系统的决策属性约简[J]. 计算机工程与应用, 2009, 45(28): 148-150, 229.
[15]  Leung, Y., Fischer, M.M., Wu, W.Z. and Mi, J.S. (2008) A Rough Set Approach for the Discovery of Classification Rules in Interval-Valued Information Systems. International Journal of Approximate Reasoning, 47, 233-246.
https://doi.org/10.1016/j.ijar.2007.05.001
[16]  张楠, 苗夺谦, 岳晓冬. 区间值信息系统的知识约简[J]. 计算机研究与发展, 2010, 47(8): 1362-1371.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133