All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

An Option Valuation Formula for Stochastic Volatility Driven by GARCH Processes

DOI: 10.4236/jmf.2023.132015, PP. 221-247

Keywords: Option Pricing, Stochastic Volatility, GARCH, Risk Premia

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have developed a practical and elegant closed-form option pricing formula for general GARCH models using a risk-neutral argument. To estimate the parameters, we propose a procedure and utilize Monte Carlo simulation to calculate the prices. Our formula has been successfully applied to S&P 500 index options and Chinese SSE 50 ETF options, providing empirical evidence that it outperforms the Black-Scholes formula with constant volatility in both the U.S. and Chinese financial markets. While there may be other equivalent martingale measures in this setting, our formula serves as a useful reference for pricing options.

References

[1]  Engle, R.F. (2002) New Frontiers for ARCH Models. Journal of Applied Econometrics, 17, 425-446. https://doi.org/10.1002/jae.683
[2]  Black, F., and Scholes, M. (1973) The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81, 637-659. https://doi.org/10.1086/260062
[3]  Merton, R.C. (1973) Theory of Rational Option Pricing. Bell Journal of Economics and Management Science, 4, 141-183. https://doi.org/10.2307/3003143
[4]  Cox, J., Ross, S. and Rubinstein, M. (1979) Option Pricing: A Simplified Approach. Journal of Financial Economics, 7, 229-263.
https://doi.org/10.1016/0304-405X(79)90015-1
[5]  Engle, R.F. (1982) Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U.K. Inflation. Econometrica, 50, 987-1008.
https://doi.org/10.2307/1912773
[6]  Bollerslev, T. (1986) Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
[7]  Nelson, D.B. (1991) Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica, 59, 347-370. https://doi.org/10.2307/2938260
[8]  Francq, C. and Zakoian, J.-M. (2010) GARCH Models: Structure, Statistical Inference and Financial Applications. Wiley, Hoboken.
https://doi.org/10.1002/9780470670057
[9]  Engle, R.F., Lilien, D.M. and Robins, R.P. (1987) Estimating the Time Varying Risk Premia in the Term Structure: The ARCH-M Model. Econometrica, 55, 391-407.
https://doi.org/10.2307/1913242
[10]  Hull, J. and White, A. (1987) The Pricing of Options on Assets with Stochastic Volatilities. Journal of Finance, 42, 281-300.
https://doi.org/10.1111/j.1540-6261.1987.tb02568.x
[11]  Bollerslev, T. and Mikkelsen, H. (1996) Modeling and Pricing Long Memory in Stock Market Volatility. Journal of Econometrics, 73, 151-184.
https://doi.org/10.1016/0304-4076(95)01736-4
[12]  Duan, J.-C. (1995) The GARCH Option Pricing Model. Mathematical Finance, 5, 13-32. https://doi.org/10.1111/j.1467-9965.1995.tb00099.x
[13]  Zumbach, G. and Fernández, L. (2013) Fast and Realistic European ARCH Option Pricing and Hedging. Quantitative Finance, 13, 713-728.
https://doi.org/10.1080/14697688.2012.750009
[14]  Zumbach, G. and Fernández, L. (2014) Option Pricing with Realistic ARCH Processes. Quantitative Finance, 14, 143-170. https://doi.org/10.1080/14697688.2013.816437
[15]  Christensen, B., Dahl, C. and Iglesias, E. (2012) Semiparametric Inference in a GARCH-in-Mean Model. Journal of Econometrics, 167, 458-472.
https://doi.org/10.1016/j.jeconom.2011.09.028
[16]  Conrad, C. and Mammen, E. (2016) Asymptotics for Parametric GARCH-in-Mean Models. Journal of Econometrics, 194, 319-329.
https://doi.org/10.1016/j.jeconom.2016.05.010
[17]  Fiorentini, G., Sentana, E. and Shephard, N. (2004) Likelihood-Based Estimation of Latent Generalized ARCH Structures. Econometrica, 72, 1481-1517.
https://doi.org/10.1111/j.1468-0262.2004.00541.x
[18]  Aït-Sahalia Y. and Jacod, J. (2014) High-Frequency Financial Econometrics. Princeton University Press, Princeton.
https://doi.org/10.23943/princeton/9780691161433.001.0001
[19]  Noureldin, D., Shephard, N. and Sheppard, K. (2012) Multivariate High-Frequency-Based Volatility (HEAVY) Models. Journal of Applied Econometrics, 27, 907-933.
https://doi.org/10.1002/jae.1260
[20]  Shephard, N. and Sheppard, K. (2010) Realising the Future: Forecasting with High-Frequency-Based Volatility (HEAVY) Models. Journal of Applied Econometrics, 25, 197-231. https://doi.org/10.1002/jae.1158

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133