全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Performance of Rhodamine-Sensitized Solar Cells Fabricated with Silver Nanoparticles

DOI: 10.4236/anp.2023.122006, PP. 68-79

Keywords: TiO2, Silver Nanoparticles, Rhodamine, Optical, Dye-Sensitized Solar Cell

Full-Text   Cite this paper   Add to My Lib

Abstract:

A plasmonic effect of silver nanoparticles (AgNPs) in dye-sensitized solar cells (DSSCs) is studied. In this investigation, the efficiency of dye-sensitized solar cells has been remarkably increased by infusion of synthesized silver nanoparticles into the TiO2 photoanode. Rhodaminederivative RdS1 was synthesized by microwave-assisted condensation of hydrazide and 3-for-mylchromone. The synthesized silver nanoparticles were characterized with UV/Vis absorption spectroscopy and transmission electron microscopy. The interfacial charge transport phenomena of the dye-sensitized solar cell (DSSCs) are determined by electrochemical impedance spectroscopy and the corresponding efficiencies are calculated using current-voltage (I-V) curve. The solar cell photoanode with silver nanoparticles infused with RdS1 in titanium dioxide had the highest solar-to-electric power efficiency at 0.17%.

References

[1]  Roslan, N., Yaacob, M.E., Radzi, M.A.M., Hashimota, Y., Jamaludin, D. and Chen, G. (2018) Dye Sensitized Solar Cell (DSSC) Greenhouse Shading: New Insights for Solar Radiation Manipulation. Renewable and Sustainable Energy Reviews, 92, 171-186.
https://doi.org/10.1016/j.rser.2018.04.095
[2]  Kuppu, S.V., Mohandoss, S., Murugesan, B., Venkatesan, S., Marimuthu, S., Chokalingam, S., Jeyaraman, A.R., Ahmed, N., Thambusamy, S. and Lee, Y.R. (2023) Development of Photo-Anode Materials for Dye Sensitized Solar Cell Using Natural Sensitized of Portulaca Grandiflora Flower-Soaked Titania Nanocrystalline and Nanofiber. Chemical Physical Letters, 812, Article ID: 140271.
https://doi.org/10.1016/j.cplett.2022.140271
[3]  Kannan, U.M., Giribabu, L. and Narayana Jammalamadaka, S. (2019) Demagnetization Field Driven Charge Transport in a TiO2 Based Dye Sensitized Solar Cell. Solar Energy, 187, 281-289.
https://doi.org/10.1016/j.solener.2019.05.029
[4]  Ahmed, S.H.A., Al-Ahmed, A., Hakeem, A.S., Alshahrani, T., Mohmood, Q., Mehmood, U., Qayyum, H.A., Younas, M., Illyas, M., Dafalla, H., Jawaid, R., Laref, A. and Yago, A.J. (2021) Enhancing the Performance of Dye-Sensitized Solar Cell Using Nano-Sized Erbium Oxide on Titanium Oxide Photoanode by Impregnation Route. Journal of Photochemistry and Photobiology, 7, Article ID: 100047.
https://doi.org/10.1016/j.jpap.2021.100047
[5]  Tontapha, S., Uppachai, P. and Amornkitbamrung, V. (2021) Fabrication of Functional Materials for Dye-Sensitized Solar Cells. Frontiers Energy Research, 9, Article ID: 641983.
https://doi.org/10.3389/fenrg.2021.641983
[6]  Aduroja, O., Jani, M., Ghann, W., Ahmed, S., Uddin, J. and Abebe, F. (2022) Synthesis, Characterization, and Studies on Photophysical Properties of Rhodamine Derivatives and Metal Complexes in Dye-Sensitized Solar Cells. ACS Omega, 7, 14611-14621.
https://doi.org/10.1021/acsomega.1c06772
[7]  Ranamagar, B., Abiye, I. and Abebe, F. (2023) Dye-Sensitized Solar Cells on TiO2 Photoelectrodes Sensitized with Rhodamine. Materials Letters, 336, Article ID: 133887.
https://doi.org/10.1016/j.matlet.2023.133887
[8]  Hou, W. and Cronin, S.B. (2013) A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Advanced Functional Materials, 23, 1612-1619.
https://doi.org/10.1002/adfm.201202148
[9]  Zhou, N., Lopez, V., Wang, Q., Polavarapu, L., Patonria-Santos, I. and Xu, Q.H. (2015) Plasmon-Enhanced Light Harvesting Applications in Enhanced Photocatalysis, Photodynamic Therapy and Photovoltaics. RSC Advances, 5, 29076-29097.
https://doi.org/10.1039/C5RA01819F
[10]  Aduroja, O., Abiye, I., Fathima, A., Tadesse, S., Ozturk, B., Wachira, J. and Abebe, F. (2023) Microwave-Assisted Synthesis for a Highly Selective Rhodamine 6G-Derived Fluorescent Sensor and Bioimaging. Inorganic Chemistry Communications, 147, Article ID: 110236.
https://doi.org/10.1016/j.inoche.2022.110236
[11]  Aduroja, O., Shaw, R. and Abebe, F. (2022) A Bis(rhodamine 6G)-Based Fluorescent Sensor for Hg2+: Microwave-Assisted Synthesis, Photophysical Properties, and Computational Studies. Research on Chemical Intermediates, 48, 1847-1861.
https://doi.org/10.1007/s11164-022-04704-x
[12]  Solomon, S.D., Bahadory, M., Jeyarajasingam, A.V., Rutkowsky, S.A., Boritz, C. and Mulfinger, L. (2007) Synthesis and Study of Silver Nanoparticles. Journal of Chemical Education, 84, 322-335.
https://doi.org/10.1021/ed084p322
[13]  Song, D.H., Kim, H.Y., Kim, H.S., Suh, J.S., Jun, B.H. and Rho, W.Y. (2017) Preparation of Plasmonic Monolayer with Ag and Au Nanoparticles for Dye-Sensitized Solar Cells. Chemical Physics Letters, 687, 152-157.
https://doi.org/10.1016/j.cplett.2017.08.051
[14]  Blake-Hedges, J.M., Greenspan, S.H., Mathew, J.A., McCarron, M.A., Mendonca, M.L. and Wustholz, K.L. (2015) Plasmon-Enhanced Fluorescence of Dyes on Silica-Coated Silver Nanoparticles: A Single-Nanoparticle Spectroscopy Study. Chemical Physics Letters, 635, 328-333.
https://doi.org/10.1016/j.cplett.2015.06.083
[15]  Dhonde, M., Sahu, K., Murty, V.V.S., Nemala, S.S. and Bhargava, P. (2017) Surface Plasmon Resonance Effect of Cu Nanoparticles in a Dye Sensitized Solar Cell. Electrochimica Acta, 249, 89-95.
https://doi.org/10.1016/j.electacta.2017.07.187
[16]  Isah, K.U., Jolayemi, B.J., Ahmadu, U. and Kimpa, M.I. (2016) Plasmonic Effect of Silver Nanoparticles Intercalated into Mesoporous Betalain-Sensitized-TiO2 Film Electrodes on Photovoltaic Performance of Dye-Sensitized Solar Cells. Materials for Renewable and Sustainable Energy, 5, Article No. 10.
https://doi.org/10.1007/s40243-016-0075-z
[17]  Saravanan, S., Kato, R., Balamurugan, M., Kaushik, S. and Soga, T. (2017) Efficiency Improvement in Dye Sensitized Solar Cells by the Plasmonic Effect of Green Synthesized Silver Nanoparticles. Journal of Science: Advanced Materials and Devices, 2, 418-414.
https://doi.org/10.1016/j.jsamd.2017.10.004
[18]  Abebe, F., Gonzalez, J., Makins-Dennis, K. and Shaw, R. (2020) A New Bis(rhodamine)-Based Colorimetric Chemosensor for Cu2+. Inorganic Chemistry Communications, 120, Article ID: 108154.
https://doi.org/10.1016/j.inoche.2020.108154
[19]  Deng, H. and Yu, H. (2019) Silver Nanoparticle Surface Enabled Self-Assembly of Organic Dye Molecules. Materials, 12, 2592.
https://doi.org/10.3390/ma12162592
[20]  Schaadt, D.M., Feng, B. and Yu, E.T. (2005) Enhanced Semiconductor Optical Absorption via Surface Plasmon Excitation in Metal Nanoparticles. Applied Physics Letters, 86, Article ID: 063106.
https://doi.org/10.1063/1.1855423
[21]  Mock, J.J., Barbic, M., Smith, D.R., Schultz, D.A. and Schultz, S. (2002) Shape Effects in Plasmon Resonance of Individual Colloidal Silver Nanoparticles. The Journal of Chemical Physics, 116, 6755-6759.
https://doi.org/10.1063/1.1462610
[22]  Abebe, F., Perkins, P., Shaw, R. and Tadesse, S. (2020) A Rhodamine-Based Fluorescent Sensor for Selective Detection of Cu2+ in Aqueous Media: Synthesis and Spectroscopic Properties. Journal of Molecular Structure, 1205, Article ID: 127594.
https://doi.org/10.1016/j.molstruc.2019.127594
[23]  Chatterjee, S. (2018) Performance of Dye-Sensitized Solar Cells (DSSCs) Fabricated with Zinc Oxide (ZnO) Nanopowders and Nanorods. Journal of Materials Engineering and Performance, 27, 2713-2718.
https://doi.org/10.1007/s11665-018-3285-y
[24]  Garmaroudi, Z.A. and Mohammadi, M.R. (2016) Plasmonic Effects of Infiltrated Silver Nanoparticles inside TiO2 Film: Enhanced Photovoltaic Performance in DSSCs. Journal of the American Ceramic Society, 99, 167-173.
https://doi.org/10.1111/jace.13923
[25]  Adhikari, S.G., Shamsaldeen, A. and Andersson, G.G. (2019) The Effect of TiCl4 Treatment on the Performance of Dye-Sensitized Solar Cells. The Journal of Chemical Physics, 151, Article ID: 164704.
https://doi.org/10.1063/1.5125996

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133