全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于YOLOv8的可回收垃圾识别方法研究
Research on Recyclable Waste Identification Method Based on YOLOv8

DOI: 10.12677/CSA.2023.135099, PP. 1019-1025

Keywords: 垃圾识别,目标检测,YOLOv8,Ultralytics
Garbage Recognition
, Object Detection, YOLOv8, Ultralytics

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着经济和社会的快速发展,如何更好地分类、清运和回收垃圾已变得日益重要和广受重视。为了让垃圾的分选更加智能化,减少对人工的依赖,可以采用基于深度学习的目标识别算法,对垃圾图像进行有效地识别和检测。本文分析了于2023年1月新提出的YOLOv8 (You Only Look Once)算法的改进之处,并将YOLOv8算法应用于可回收垃圾的识别。实验结果表明,与基于YOLOv5算法的识别结果相比,基于YOLOv8算法的可回收垃圾的识别精度显著提高,mAP (平均精度值)达到了96%,已能满足分拣的需要。
With the rapid development of the economy and society, how to better sort, remove and recycle garbage has become increasingly important and widely valued. In order to make the sorting of garbage more intelligent and reduce the dependence on labor, a target recognition algorithm based on deep learning can be used to effectively identify and detect garbage images. This paper analyzes the improvements of the newly proposed YOLOv8 (You Only Look Once) algorithm in January 2023, and applies the YOLOv8 algorithm to the identification of recyclable waste. The experimental results show that compared with the recognition results based on YOLOv5 algorithm, the recognition accuracy of recyclable garbage based on YOLOv8 algorithm is significantly improved, and the mAP (average accuracy value) reaches 96%, which can meet the needs of sorting.

References

[1]  李浩浩. 基于深度学习的可回收垃圾视觉分拣系统[D]: [硕士学位论文]. 西安: 西安理工大学, 2021.
[2]  李庆, 龚远强, 张玮, 等. 用于智能垃圾分拣的注意力YOLOv4算法[J]. 计算机工程与应用, 2022, 58(11): 260-268.
[3]  梅志敏, 陈艳, 胡杭, 张融. 机器人与机器视觉的垃圾分拣系统设计[J]. 机械设计与制造, 2022, 374(4): 275-278.
[4]  Girshick, R. (2015) Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7-13 December 2015, 1440-1448.
https://doi.org/10.1109/ICCV.2015.169
[5]  Ren, S., He, K., Girshick, R. and Sun, J. (2016) Faster R-CNN: To-wards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Ma-Chine Intelligence, 39, 1137-1149.
https://doi.org/10.1109/TPAMI.2016.2577031
[6]  Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. (2016) You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 27-30 June 2016, 779-788.
https://doi.org/10.1109/CVPR.2016.91
[7]  Liu, W., Anguelov, D., Erhan, D., et al. (2016) SSD: Single Shot Multibox Detector.
https://arxiv.org/abs/1512.02325

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133