全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

液压管路压力脉动抑制技术的现状与展望
Status and Prospects of Pressure Pulsation Suppression Technology in Hydraulic Lines

DOI: 10.12677/JSTA.2023.113031, PP. 277-285

Keywords: 压力脉动,被动控制技术,主动控制技术,主被动联合控制技术
Pressure Pulsation
, Passive Control Technology, Active Control Technology, Combined Active-Passive Control Technology

Full-Text   Cite this paper   Add to My Lib

Abstract:

液压管路中存在的压力脉动会产生管路噪声,必须在最大程度范围内予以消除。文章回顾了近几十年来学者们在压力脉动抑制方面所做的贡献,对被动控制技术、主动控制技术、主被动联合控制技术进行了详细的阐述,并对各种技术的发展趋势进行了展望。
ed. The article reviews the con-tributions made by scholars in pressure pulsation suppression in recent decades, elaborates on passive control technology, active control technology and combined active-passive control technol-ogy, and gives an outlook on the development trend of various technologies.

References

[1]  田舒. 一种矿用履带式升降车的液压系统设计[J]. 液压气动与密封, 2023, 43(4): 70-72.
[2]  于灵杰, 杨建忠, 徐兆可, 陈世康. 民机液压管路压接参数研究及高压振动特性分析[J/OL]. 航空动力学报: 1-13.
https://doi.org/10.13224/j.cnki.jasp.20220786, 2023-4-18.
[3]  习毅, 李宝仁, 万步炎, 许靖伟. 串联囊式压力脉动衰减器的脉动抑制性能[J]. 中国机械工程, 2023, 34(8): 948-954.
[4]  李永涛, 杨波, 木合塔尔?克力木. 液压系统流体脉动抑制方法综述[J]. 机械工程学报, 2022, 58(16): 344-359.
[5]  Wang, Y., Shen, T., Tan, C., Fu, J. and Guo, S. (2021) Research Status, Critical Technologies, and Development Trends of Hydraulic Pressure Pulsation Attenuator. Chinese Journal of Mechanical Engineering, 34, Article No. 14.
https://doi.org/10.1186/s10033-021-00532-z
[6]  杨帆, 邓斌, 王宇强, 李志伟. 具有柔性衬里的压力脉动衰减器滤波特性[J]. 西南交通大学学报, 2019, 54(1): 154-159.
[7]  赵海霞, 张强, 史伟杰, 张永涛. 多个分支盲管衬里式压力脉动衰减器特性研究[J]. 噪声与振动控制, 2020, 40(3): 229-232.
[8]  杨帆, 邓斌. 扩张室压力脉动衰减器声传播的有效性[J]. 西南交通大学学报, 2020, 55(5): 1117-1123.
[9]  Kela, L. (2009) Resonant Frequency of an Adjustable Helmholtz Resonator in a Hydraulic System. Archive of Applied Mechanics, 79, 1115-1125.
https://doi.org/10.1007/s00419-008-0279-5
[10]  Selamet, A. and Ji, Z.L. (2000) Circular Asymmetric Helmholtz Resonators. The Journal of the Acoustical Society of America, 107, 2360-2369.
https://doi.org/10.1121/1.428622
[11]  章寅. 液压系统压力脉动衰减器特性研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2011.
[12]  Earnhart, N.E. and Cunefare, K.A. (2012) Compact Helmholtz Resonators for Hydraulic Systems. International Journal of Fluid Power, 13, 41-50.
https://doi.org/10.1080/14399776.2012.10781045
[13]  Kela, L. and V?h?oja, P. (2009) Control of an Adjustable Helmholtz Resonator in a Low-Pressure Hydraulic System. Interna-tional Journal of Fluid Power, 10, 29-39.
https://doi.org/10.1080/14399776.2009.10780986
[14]  Kojima, E. and Ichiyanagi, T. (1998) Development Research of New Types of Multiple Volume Resonators. In: Burrows, C.R. and Edge, K.A., Eds., Bath Workshop on Power Transmission and Motion Control (PTMC 98), University of Bath, Bath, 193-206.
[15]  Guan, C. and Jiao, Z. (2012) Modeling and Optimal Design of 3 Degrees of Freedom Helmholtz Res-onator in Hydraulic System. Chinese Journal of Aeronautics, 25, 776-783.
https://doi.org/10.1016/S1000-9361(11)60444-5
[16]  杜润. 液压系统脉动衰减器的特性分析[D]: [博士学位论文]. 成都: 西南交通大学, 2010.
[17]  田静. 微穿孔板和小孔喷注——马大猷教授对声学的特殊贡献[J]. 声学学报, 2015, 40(2): 129-133.
[18]  王震. 基于微穿孔板吸声结构理论的复合微穿孔管消声器的设计及优化[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2018.
[19]  曾祥荣, 张建成. 多孔同心式液压消声器的研究[J]. 机床与液压, 1990(3): 41-43.
[20]  周星德, 姜冬菊. 结构振动主动控制[M]. 北京: 科学出版社, 2009.
[21]  杨帆. 扩张室液压脉动衰减器的插入损失和传递损失研究[D]: [博士学位论文]. 成都: 西南交通大学, 2020.
[22]  贺尚红, 王雪芝, 何志勇, 等. 薄板振动式液压脉动衰减器滤波特性[J]. 机械工程学报, 2013, 49(4): 148-153.
[23]  贺尚红, 桑青青, 贺华波, 何志勇. 基于机械吸振原理的多自由度薄板振动式脉动衰减器滤波特性[J]. 中南大学学报(自然科学版), 2014, 45(5): 1457-1462.
[24]  贺尚红, 贺华波, 何志勇, 等. 薄板振动式广谱流体脉动衰减器实验研究[J]. 液压与气动, 2013(6): 24-27.
[25]  贺尚红, 叶阿敏, 王文. 复合式压力脉动衰减器衰减特性[J]. 长沙理工大学学报(自然科学版), 2015, 12(3): 91-97+109.
[26]  陈杰. 基于质量-弹簧振子系统的液压脉动衰减器特性研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2019.
[27]  王守兵. 柔性膜片式流体滤波器的研究[D]: [硕士学位论文]. 长沙: 长沙理工大学, 2012.
[28]  邢科礼, 葛思华, 丁崇生, 何钺. 新型串联囊式蓄能器对油源压力脉动影响的试验研究[J]. 机床与液压, 1998(1): 39-40.
[29]  季晓伟. 流体脉动的入流式主动控制[D]: [硕士学位论文]. 成都: 西南交通大学, 2017.
[30]  Kojima, E., Shinada, M. and Shinbo, M. (1990) Development of an Active Attenua-tor for Pressure Pulsation in Liquid Piping Systems; 1st Report, a Real Time Measuring Method of Progressive Wave in a Pipe. Transactions of the Japan Society of Mechanical Engineers Series B, 56, 2937-2944.
https://doi.org/10.1299/kikaib.56.2937
[31]  Yamaoka, T. and Kojima, E. (1996) Development of an Ac-tive-Adaptive Attenuator for Pressure Pulsation in Liquid Piping Systems. Proceedings of the JFPS International Sym-posium on Fluid Power, 1996, 449-454.
https://doi.org/10.5739/isfp.1996.449
[32]  Yokata, S., Somada, H. and Yamaguchi, H. (1996) Study on an Active Accumulator: Active Control of High-Fre- quency Pulsation of Flow Rate in Hydraulic Systems. JSME International Journal Series B Fluids and Thermal Engineering, 39, 119-124.
https://doi.org/10.1299/jsmeb.39.119
[33]  Kim, D.H., Park, J.W., Lee, G.S. and Lee, K.I. (2002) Active Impact Control System Design with a Hydraulic Damper. Jour-nal of Sound and Vibration, 250, 485-501.
https://doi.org/10.1006/jsvi.2001.3924
[34]  Wang, L. and Johnston, D.N. (2008) Adaptive Attenuation of Narrow Band Fluid Borne Noise in Asimple Hydraulic System. Bath/ASME Sym-posium on Fluid Power and Motion Control 2008, Bath, 10-12 September 2008, 357-368.
[35]  邢科礼, 葛思华, 丁崇生. 基于神经网络的有源压力脉动衰减的试验研究[J]. 液压气动与密封, 2001(2): 2-4.
[36]  Jiao, Z., Chen, P., Hua, Q. and Wang, S. (2003) Adaptive Vibration Active Control of Fluid Pressure Pulsations. Proceedings of the Insti-tution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 217, 311-318.
https://doi.org/10.1177/095965180321700407
[37]  Guan, C., Jiao, Z., Wu, S., Shang, Y. and Zheng, F. (2014) Active Control of Fluid Pressure Pulsation in Hydraulic Pipe System by Bilateral-Overflow of Piezoelectric Direct-Drive Slide Valve. Journal of Dynamic Systems Measurement & Control, 136, Article ID: 031025.
https://doi.org/10.1115/1.4026343
[38]  陈季萍. 降低液压系统压力脉动方法的研究[J]. 煤矿机械, 2006, 27(6): 955-957.
[39]  Pan, M. (2017) Adaptive Control of a Piezoelectric Valve for Fluid-Borne Noise Reduction in a Hydrau-lic Buck Converter. Journal of Dynamic Systems Measurement & Control, 139, Article ID: 081007.
https://doi.org/10.1115/1.4035613
[40]  Pan, M., Johnston, N. and Plummer, A. (2016) Hybrid Fluid-Borne Noise Control in Fluid-Filled Pipelines. Journal of Physics: Conference Series, 744, Article ID: 12016.
https://doi.org/10.1088/1742-6596/744/1/012016
[41]  Pan, M., Ding, B., Yuan, C., Zou, J. and Yang, H. (2018) Novel Integrated Control of Fluid-Borne Noise in Hydraulic Systems. BATH/ASME 2018 Symposium on Fluid Power and Motion Control, Bath, 12-14 September 2018.
https://doi.org/10.1115/FPMC2018-8828

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133