|
溶液法生长钙钛矿纳米线
|
Abstract:
近些年,一维(1D)卤化物钙钛矿的低维纳米材料在光电探测器材料领域成为备受科学家关注的焦点之一,因其拥有优异的光吸收系数、发射效率和高载流子迁移率,长的载流子扩散长度等优秀的光电性能。本实验通过蒸发诱导自组装方法制备出钙钛矿纳米线,在保持钙钛矿溶液浓度不变的情况下,把离子液体1-丁基-3-甲基咪唑四氟硼酸(BMIMBF4)作为添加剂加入到钙钛矿纳米线中。其中设置了四组不同的BMIMBF4浓度来探究离子液体的添加对钙钛矿纳米线的影响,其中离子液体的浓度分别为0 mmol、0.1 mmol、0.3 mmol、0.6 mmol。从实验结果可以得知,加入BMIMBF4离子液体之后纳米线的PL (稳态光致发)强度更高,表明BMIMBF4对MAPbI3纳米线的生长起到一定的促进作用,提高了钙钛矿纳米线的稳定性和光电性能。其中加入0.3 mmol离子液体的促进效果最强,加入0.6 mmol离子液体的钙钛矿纳米线相对于浓度为0.3 mmol那一组的促进效果较弱,可能是由于离子液体浓度过高抑制了钙钛矿纳米线的生长。
In recent years, one-dimensional (1D) halide perovskite low-dimensional nanomaterials have become one of the focuses of scientists in the field of photode-tector materials, because of its excellent optical absorption coefficient, emission efficiency, high car-rier mobility, long carrier diffusion length and other excellent photoelectric properties. In this ex-periment, perovskite nanowires were prepared by evaporation-induced self-assembly, and ionic liquid 1-butyl-3-methylimidazo- lium tetrafluoroboric acid (BMIMBF4) was added as an additive while keeping the concentration of perovskite solution unchanged. Four groups of different concen-trations of BMIMBF4 were set to explore the influence of ionic liquid on perovskite nanowires, and the concentrations were 0 mmol, 0.1 mmol, 0.3 mmol and 0.6 mmol respectively. From the experi-mental results, it can be known that the PL (steady-state photoluminescence) intensity of nanowires is higher after the addition of BMIMBF4 ionic liquid, which indicates that BMIMBF4 can promote the growth of MAPbI3 nanowires and improve the stability and photoelectric properties of perovskite nanowires. Among them, adding 0.3 mmol ionic solution has the strongest promotion effect, and adding 0.6 mmol ionic liquid has a weaker promotion effect than the group with the concentration of 0.3 mmol, which may be due to the high concentration of ionic liquid inhibiting the growth of perovskite nanowires.
[1] | Wang, J.Y., Wei, Y.P., Xu, Y.Y., Wang, Q., Lu, H.B., Qiu, L.Z. and Zhu, J. (2020) Photoluminescence and Electroluminescence Properties of Aligned CsPbBr3 Nanowire Films Prepared by Off-Center Spin-Coating. Synthetic Metals, 267, Article ID: 116481. https://doi.org/10.1016/j.synthmet.2020.116481 |
[2] | Li, Z.J., Chu, S.L., Zhang, Y.H., Chen, W.J., Chen, J., Yuan, Y.B., et al. (2022) Mass Transfer Printing of Metal-Halide Perovskite Films and Nanostructures. Advanced Materials (Deerfield Beach, Fla.), 34, Article ID: 2203529.
https://doi.org/10.1002/adma.202203529 |
[3] | 刘艳珍, 崔艳霞. MAPbI3钙钛矿纳米线光电探测器[J]. 激光与光电子学进展, 2018, 55(10): 305-311. |
[4] | Wang, D.D., Cheng, W.J., Wang, C., Zhou, M., Tian, W. and Li, L. (2022) Recent Advances in the Functionalization of Perovskite Solar Cells/Photodetectors. Laser & Photonics Reviews, 17, Arti-cle ID: 2200641.
https://doi.org/10.1002/lpor.202200641 |
[5] | Zhou, G.D., Kuang, D.L., Wang, G., He, X.F., Xu, C.Y., Dong, J., et al. (2023) PbI3-Ion Abnormal Migration in CH3NH3PbIxCl3?x Ultralong Single Nanowire for Resistive Switching Memories. Materials Characterization, 199, Arti-cle ID: 112762. https://doi.org/10.1016/j.matchar.2023.112762 |
[6] | Chen, Y., Zhang, M., Li, F.Q. and Yang, Z.Y. (2023) Recent Pro-gress in Perovskite Solar Cells: Status and Future. Coatings, 13, Article No. 644. |
[7] | Anshu, K., Prathul, N., Vishal, K., Naveen, K.T. and Soumitra, S. (2023) 3D Printed Optical Sensor for Highly Sensitive Detection of Picric Acid Using Perovskite Nanocrystals and Mechanism of Photo-Electron Transfer. Spectrochimica Acta Part A: Molecular and Bio-molecular Spectroscopy, 286, Article ID: 121956.
https://doi.org/10.1016/j.saa.2022.121956 |
[8] | Abubakkar, S., Kumar, H.P., Ujjal, D., Asim, R. and Kumar, S.P. (2023) Organic-Inorganic FAPbBr3 Perovskite Based Flexible Optoelectronic Memory Device for Light-Induced Multi Level Resistive Switching Application. Materials Chemistry and Physics, 297, Article ID: 127292. |
[9] | 胡扬, 张胜利, 周文瀚, 刘高豫, 徐丽丽, 尹万健, 曾海波. 基于机器学习探索钙钛矿材料及其应用[J]. 硅酸盐学报, 2023, 51(2): 452-468. https://doi.org/10.14062/j.issn.0454-5648.20220776 |
[10] | Wang, J.T., Wang, S.Z., Zhou, Y.H., Lou, Y.H. and Wang, Z.K. (2022) Flexible Perovskite Light-Emitting Diodes: Progress, Challenges and Perspective. Science China Materials, 66, 1-21. https://doi.org/10.1007/s40843-022-2197-4 |
[11] | 马宁宁. 基于钙钛矿和有机材料体系的宽谱段光电探测器及其应用研究[D]: [博士学位论文]. 长春: 吉林大学, 2022. https://doi.org/10.27162/d.cnki.gjlin.2022.000337 |
[12] | Wang, H., Zhang, C.Q., Huang, W.Q., Zou, X.P., Chen, Z.Y., Sun, S.L., et al. (2022) Research Progress of ABX3-Type Lead-Free Perovskites for Optoelectronic Applications: Materials and Devices. Physical Chemistry Chemical Physics, 24, 27585-27605. |
[13] | Wang, Y., Yang, Y., Han, D.-W., Yang, Q.-F., Yuan, Q., Li, H.-Y., et al. (2020) Amphoteric Imidazole Doping Induced Large-Grained Perovskite with Reduced Defect Density for High Performance Inverted Solar Cells. Solar Energy Materials and Solar Cells, 212, Arti-cle ID: 110553. https://doi.org/10.1016/j.solmat.2020.110553 |
[14] | Wu, D.J., Xu, Y.C., Zhou, H., Feng, X., Zhang, J.Q., Pan, X.Y., et al. (2022) Ultrasensitive, Flexible Perovskite Nanowire Photodetectors with Long-Term Stability Ex-ceeding 5000 h. InfoMat, 4, e12320.
https://doi.org/10.1002/inf2.12320 |
[15] | 李呈霞. MAPbI3柱状单晶的生长及其光电探测器的研究[D]: [硕士学位论文]. 长春: 吉林大学, 2020.
https://doi.org/10.27162/d.cnki.gjlin.2020.006919 |
[16] | Yang, Q., Dettori, R., Yuan, G.J. and Anderson, L.R. (2020) A Perovskite Solar Cell Owing Very High Stabilities and Power Conversion Efficiencies. Solar Energy, 201, 541-546. https://doi.org/10.1016/j.solener.2020.02.085 |
[17] | Zhang, A.N. and Lv, Q.R. (2020) Organic-Inorganic Hybrid Perovskite Nanomaterials: Synthesis and Application. ChemistrySelect, 5, 12641-12659. https://doi.org/10.1002/slct.202003659 |
[18] | Li, G.H., Che, T., Ji, X.Q., Liu, S.D., Hao, Y.Y., Cui, Y.X. and Liu, S.Z. (2019) Record‐Low‐Threshold Lasers Based on Atomically Smooth Triangular Nanoplatelet Perovskite. Advanced Functional Materials, 29, Article ID: 1805553.
https://doi.org/10.1002/adfm.201805553 |
[19] | Pan, S., Zou, H.Y., Wang, A.C., Wang, Z.W., Yu, J., Lan, C.T., Liu, Q.L., et al. (2020) Rapid Capillary‐Assisted Solution Printing of Perovskite Nanowire Arrays Enables Scalable Produc-tion of Photodetectors. Angewandte Chemie, 132, 15052-15059. https://doi.org/10.1002/ange.202004912 |
[20] | Cheng, L., Xing, S.L., He, J.Z., He, Y.F., Li, J.H. and Fu, C.L. (2022) Regulation of the Photovoltaic Performance of TiO2@MAPbI3 Core-Shell Nanowire Arrays. International Journal of Materials Research, 113, 1053-1061.
https://doi.org/10.1515/ijmr-2021-8450 |
[21] | 吴定军. 灵敏稳定柔性钙钛矿纳米线光电探测器的构筑及其应用研究[D]: [博士学位论文]. 武汉: 湖北大学, 2022. https://doi.org/10.27130/d.cnki.ghubu.2022.000013 |