|
基于改进WOA预测PID的电缆线径控制
|
Abstract:
针对电线电缆生产推挤系统自身具有的时滞性、非线性和大扰动等特点导致生产推挤过程线径厚度控制较难和建模难度较高的问题,提出一种改进鲸鱼算法(IWOA)、动态控制矩阵(DMC)与传统PID相结合的算法对推挤生产系统进行优化的策略。这种策略集合了PID算法的较少的稳态误差优点、DMC预测克服时滞问题的优点和IWOA自动寻优整定参数的优点于一身。通过在MATLAB平台上对推挤系统进行建模和仿真,对比传统PID算法,未改进的WOA算法的效果。实验仿真表明,具备预测能力的IWOA控制策略可以使系统达到较小的超调量、较快的响应速度和较强抗扰性等优点,具有一定的实际生产应用价值。
For the current stagnation, non-linearity and large disturbances of the production and push system of electric wire and cable production lead to the problem of difficult control and high modeling of the production push process. IWOA, dynamic control matrix (DMC) and traditional PID algorithms optimize the push production system. This strategy integrates the advantages of less steady- state errors in the PID algorithm, the advantages of DMC prediction to overcome the problem of time stagnation, and the advantages of IWOA to automatically find out the parameters. By modeling and simulation on the push system on the MATLAB platform, comparing the traditional PID algorithm and the effect of the unrestrained WOA algorithm, experimental sim-ulation shows that IWOA control strategies with predictive ability can enable the system to achieve a small over-adjust- ment, a fast response speed, and strong antipity, and have certain actual pro-duction and application value.
[1] | 周克良, 董世镇, 张自建. 基于改进磷虾群预测PID的电缆线径控制[J]. 传感器与微系统, 2022, 41(4): 96-99, 103. |
[2] | Hussein, H. (2014) Feedforward, Hot and Cold Control System for Controlling Plastic Insulation Thickness in Manufacturing of Cable Products. Arabian Journal for Science & Engineering, 39, 1399-1408.
https://doi.org/10.1007/s13369-013-0723-x |
[3] | Li, H. and Yu, Q. (2016) The Wire Beltline Diameter ACO-KF-PID Control Research. 2016 Prognostics and System Health Management Conference, Chengdu, 19-21 Octo-ber 2016, 1-6. https://doi.org/10.1109/PHM.2016.7819758 |
[4] | 袁宇鹏, 胡杨, 李军, 等. 基于动态矩阵控制的自主移动机器人模型预测控制方法研究[J]. 重庆邮电大学学报(自然科学版), 2018, 30(4): 537-543. |
[5] | 周克良, 胡梁眉, 洪智慧. 模糊分数阶PID在线径控制系统中的应用[J]. 制造业自动化, 2019, 41(7): 63-69. |
[6] | 周克良, 过振宇. 基于模糊自适应PID的推挤机线径预测控制[J]. 计算机仿真, 2019, 36(3): 302-306. |
[7] | Mirjalili, S. and Lewis, A. (2016) The Whale Optimization Algorithm. Advances in Engineering Software, 95, 51-67.
https://doi.org/10.1016/j.advengsoft.2016.01.008 |
[8] | 孙运. 基于改进鲸鱼算法的逆变器控制及应用研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2021. |
[9] | 王曦璐. 改进鲸鱼算法在函数优化和片上网络中的应用[D]: [硕士学位论文]. 西安: 西安电子科技大学, 2019. |
[10] | 赵广元, 王超. 基于人群搜索算法的直流电机优化设计[J]. 舰船电子工程, 2019, 39(10): 242-246. |
[11] | 汪谦松, 夏链, 韩江. 改进人群搜索算法优化的直线电机模糊PID控制[J]. 合肥工业大学学报(自然科学版), 2022, 45(4): 458-463, 474. |