|
贝叶斯时空模型在新冠风险评估中的应用
|
Abstract:
基于2020~2021年河南省18个地级市新冠肺炎确诊病例数据,采用BYM (Besag-York-Mollie)、FBM
(Familiar Bayesian Spatio-temporal)模型来分析新冠肺炎发病风险的时空分布特征,并探讨社会经济、
生态环境等因素对疾病风险的影响效应,同时就应用结果对比两种模型的优劣。方法:收集2020~2021
年河南新冠肺炎确诊数据,采用相关性分析排除部分相关性不大的影响因子,并运用因子分析降维诸指
标,而后分别代入两模型进行分析、讨论。结果:1) 2020~2021年河南全省的疫情风险程度是呈现下
降趋势的,高风险地区主要集中于豫北地区。2) 因子分析共构建基本经济因子、社会因子、温度因子、
降水因子以及空气质量因子五个综合指标。3) 通过模型运行后的结果和DIC值可以得出FBM模型总体要
优于BYM模型。
Based on the data of confirmed cases of COVID-19 in 18 prefecture-level cities in Henan Province
from 2020~2021, BYM (Besag-York-Mollie) and FBM (Familiar Bayesian Spatio-temporal) models
were used to analyze the spatial and temporal distribution characteristics of the risk of COVID-19,and explore the influence of socioeconomic and ecological factors. The results of this study were
also used to compare the advantages and disadvantages of the two models. Methods: The data of
confirmed cases of COVID-19 in Henan from 2020 to 2021 were collected, correlation analysis was
used to exclude some influencing factors with little correlation, and factor analysis was applied to
downscale the indicators, which were then analyzed and discussed by substituting into the two
models. Results: 1) The risk level of the epidemic in Henan province from 2020 to 2021 showed a
decreasing trend, and the high-risk areas were mainly concentrated in the northern part of Henan.
2) The factor analysis constructed five comprehensive indicators: basic economic factor, social
factor, temperature factor, precipitation factor and air quality factor. 3) The results and DIC
values after the model run can be concluded that the FBM model is better than the BYM model in
general.
[1] | 刘大有, 陈慧灵, 齐红, 等. 时空数据挖掘研究进展[J]. 计算机研究与发展, 2013, 50(2): 225-239. |
[2] | Goovaerts, P. and Gebreab, S. (2008) How Does Poisson Krigring Compare to the Popular BYM Model for Mapping Disease Risks? International Journal of Health Geographics, 7, Article No. 6. https://doi.org/10.1186/1476-072X-7-6 |
[3] | 李世元, 王学梅. 贝叶斯时空模型在空间流行病学中的研究进展[J]. 世界最新医学信息文摘, 2017(34): 55-57. |
[4] | 廖伟斌, 孙建国, 于国伟, 等. 贝叶斯模型和时空扫描统计量在胃癌死亡空间分布特征中的应用[J]. 中华疾病控制杂志, 2016, 20(8): 847-850. |
[5] | 潘蕾, 贺晓新, 罗艳侠, 等. 基于Bayes时空理论探讨北京市结核病演化特征及生态影响因素分析[J]. 中国卫生统计, 2013, 30(5): 658-664. |
[6] | 张伟文, 曹明芹, 贺湘焱. 贝叶斯时空建模在新疆涂阳肺结核发病风险中的应用研究[D]: [硕士学位论文]. 乌鲁木齐: 新疆医科大学公共卫生学院, 2019. |
[7] | da Roza, D.L., do Carmo Gullaci Guimar?es Caccia-Bava, M. and Martinez, E.Z. (2012) Spatio-Temporal Patterns of Tuberculosis Incidence in Ribeir?o Preto, State of S?o Paulo, Southeast Brazil, and Their Relationship with Social Vulnerability: A Bayesian Analysis. Revista da Sociedade Brasileira de Medicina Tropical, 45, 607-615.
https://doi.org/10.1590/S0037-86822012000500013 |
[8] | Liu, D.Q., Song, W., Xiu, C.L. and Xu, J. (2021) Un-derstanding the Spatiotemporal Pattern of Crimes in Changchun, China:A Bayesian Modeling Approach. Sustainability, 13, Article 10500. https://doi.org/10.3390/su131910500 |
[9] | Li, G., Haining, R., Richardson, S. and Best, N. (2014) Space-Time Variability in Burglary Risk: A Bayesian Spatio-Temporal Modelling Approach. Spatial Statistics, 9, 180-191. https://doi.org/10.1016/j.spasta.2014.03.006 |
[10] | Liang, D.Y., Liu, D., et al. (2021) Spatiotemporal Dis-tribution of Human Brucellosis in Inner Mongolia, China, in 2010-2015, and Influencing Factors. Scientific Reports, 11, Article 24213. https://doi.org/10.1038/s41598-021-03723-9 |
[11] | Wang, L., Xu, C.D., et al. (2021) Spa-tio-Temporal Variation in Tuberculosis Incidence and Risk Factors for the Disease in a Region of Unbalanced So-cio-Economic Development. BMC Public Health, 21, Article No. 1817.
https://doi.org/10.1186/s12889-021-11833-2 |
[12] | Raghavan, R.K., Goodin, D.G., Neises, D., Anderson, G.A. and Ganta, R.R. (2016) Hierarchical Bayesian Spatio- Temporal Analysis of Climatic and Socio-Economic Determinants of Rocky Mountain Spotted Fever. PLOS ONE, 11, e0150180. https://doi.org/10.1371/journal.pone.0150180 |
[13] | Li, J.M. and Han, X.L. (2023) Spatiotemporal Evolution and Drivers of Total Health Expenditure across Mainland China in Recent Years. International Journal of Environmental Research and Public Health, 20, Article 597.
https://doi.org/10.3390/ijerph20010597 |
[14] | Zhang, X.X. and Cheng, C.X. (2022) Temporal and Spatial Heteroge-neity of PM2.5 Related to Meteorological and Socioeconomic Factors across China during 2000-2018. International Journal of Environmental Research and Public Health, 19, Article 707. https://doi.org/10.3390/ijerph19020707 |
[15] | Wang, W., Li, J.M., et al. (2022) Spatiotemporal Trends and Ecologi-cal Determinants of Cardiovascular Mortality among 2844 Counties in Mainland China, 2006-2020: A Bayesian Model-ing Study of National Mortality Registries. BMC Medicine, 20, Article No. 467. https://doi.org/10.1186/s12916-022-02613-9 |
[16] | Spiegelhalter, D.J., Best, N.G., Carlin, B.P. and Van Der Linde, A. (2022) Bayesian Measures of Model Complexity and Fit. Journal of the Royal Statistical Society Series B: Statistical Methodology, 4, 583-639.
https://doi.org/10.1111/1467-9868.00353 |
[17] | 郑杨, 李晓松. 贝叶斯时空模型在疾病时空数据分析中的应用[J]. 中华预防医学杂志, 2010, 44(12): 1136-1139. |