全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于蛋白多肽类成分的动物药药理活性及质量控制研究进展
Research Progress on Pharmacological Activity and Quality Control of Animal Medicine Based on Protein-Peptide Components

DOI: 10.12677/PI.2023.123020, PP. 167-174

Keywords: 动物药,蛋白多肽,药理活性,质量控制
Animal Medicine
, Protein and Peptides, Activity, Quality Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

动物药在我国具有悠久的药用历史,具有抗凝、抗肿瘤、镇痛等多种药理作用。随着药用市场需求扩大、野生资源匮乏,中药市场中的动物药出现了大量伪劣产品,严重影响了动物药使用的安全性与有效性,阻碍了动物药的发展。蛋白多肽作为动物药的主要药效和组成成分,在动物药的活性研究与质量控制方面发挥着不可替代的作用。本文从动物药基于蛋白多肽类成分的活性研究与质量控制两个方面进行概述,以期为后续动物药活性研究、质量控制、标准制定提供参考。
Animal medicine has a long history of medicinal use in China, with a variety of pharmacological ef-fects such as anticoagulation, antitumor, and analgesia. With the expansion of medicinal market demand and the scarcity of wild resources, there are a large number of fake and inferior products in the animal medicine market, which seriously affects the safety and efficacy of animal medicine and hinders the development of animal medicine. Protein and peptides, as the main efficacy and components of animal medicine, play an irreplaceable role in the activity research and quality control of animal medicine. This paper provides an overview of the activity and quality control of animal medicine based on protein and peptide components, with a view to providing a reference for subsequent animal medicine activity research, quality control, and standard development.

References

[1]  Kong, Y., Huang, S.L., Shao, Y., et al. (2013) Purifica-tion and Characterization of a Novel Antithrombotic Peptide from Scolopendra subspinipes mutilans. Journal of Eth-nopharmacology, 145, 182-186.
https://doi.org/10.1016/j.jep.2012.10.048
[2]  You, W.K., Sohn, Y.D., Kim, K.Y., et al. (2004) Purification and Molecular Cloning of a Novel Serine Protease from the Centipede, Scolopendra subspinipes mutilans. Insect Biochemis-try and Molecular Biology, 34, 239-250.
https://doi.org/10.1016/j.ibmb.2003.10.003
[3]  Tran, T.V., Hoang, A.N., Nguyen, T.T.T., et al. (2017) Anticoag-ulant Activity of Low-Molecular Weight Compounds from Heterometrus laoticus Scorpion Venom. Toxins, 9, Article No. 343.
https://doi.org/10.3390/toxins9110343
[4]  黄镇林, 何亮颖, 王宏涛, 赵韶华, 王玉蓉. 土鳖虫活性组分F2-2体内抗凝药效实验[J]. 世界科学技术-中医药现代化, 2014, 16(6): 1359-1363.
[5]  Li, C., Chen, M., Li, X., et al. (2017) Purification and Function of Two Analgesic and Anti-Inflammatory Peptides from Coelomic Fluid of the Earthworm, Eisenia foetida. Peptides, 89, 71-81.
https://doi.org/10.1016/j.peptides.2017.01.016
[6]  Wang, G., Long, C., Liu, W., et al. (2018) Novel Sodium Channel Inhibitor from Leeches. Frontiers in Pharmacology, 9, Article No. 186.
https://doi.org/10.3389/fphar.2018.00186
[7]  Cui, Y., Song, Y.B., Ma, L., et al. (2010) Site-Directed Mutagenesis of the Toxin from the Chinese Scorpion Buthus martensii Karsch (BmKAS): Insight into Sites Related to Analgesic Ac-tivity. Archives of Pharmacal Research, 33, 1633-1639.
https://doi.org/10.1007/s12272-010-1012-9
[8]  Liu, Z.R., Tao, J., Dong, B.Q., et al. (2012) Pharmacological Kinetics of BmK AS, a Sodium Channel Site 4-Specific Modulator on Nav1.3. Neuroscience Bulletin, 8, 209-221.
https://doi.org/10.1007/s12264-012-1234-6
[9]  Song, Y., Liu, Z., Zhang, Q., et al. (2017) Investigation of Binding Modes and Functional Surface of Scorpion Toxins ANEP to Sodium Channels 1.7. Toxins, 9, Article No. 387.
https://doi.org/10.3390/toxins9120387
[10]  Lin, S., Wang, X., Hu, X., et al. (2017) Recombinant Expression, Functional Characterization of Two Scorpion Venom Toxins with Three Disulfide Bridges from the Chinese Scorpion Buthus martensii Karsch. Protein and Peptide Letters, 24, 235-240.
https://doi.org/10.2174/0929866524666170117142404
[11]  Mao, Q., Ruan, J., Cai, X., et al. (2013) Antinocicep-tive Effects of Analgesic-Antitumor Peptide (AGAP), a Neurotoxin from the Scorpion Buthus martensii Karsch, on Formalin-Induced Inflammatory Pain through a Mitogen-Activated Protein Kinases-Dependent Mechanism in Mice. PLOS ONE, 8, e78239.
https://doi.org/10.1371/journal.pone.0078239
[12]  Zhang, Y., Xu, J., Wang, Z.,et al. (2012) BmK-YA, an Enkephalin-Like Peptide in Scorpion Venom. PLOS ONE, 7, e40417.
https://doi.org/10.1371/journal.pone.0040417
[13]  Liu, Y., Li, Y., Zhu, Y., et al. (2021) Study of An-ti-Inflammatory and Analgesic Activity of Scorpion Toxins DKK-SP1/2 from Scorpion Buthus martensii Karsch (BmK). Toxins, 13, Article No. 498.
https://doi.org/10.3390/toxins13070498
[14]  Yang, S., Xiao, Y., Kang, D., et al. (2013) Discovery of a Selective NaV1.7 Inhibitor from Centipede Venom with Analgesic Efficacy Exceeding Morphine in Rodent Pain Models. Pro-ceedings of the National Academy of Sciences of the United States of America, 110, 17534-17539.
https://doi.org/10.1073/pnas.1306285110
[15]  弋静, 尹竹君, 全云云, 陈世龙, 郎吉瑞, 黎勇, 赵军宁, 李莉. 麝香多肽分离纯化及其抗炎作用机制研究[J]. 天然产物研究与开发, 2022, 34(12): 2040-2049.
[16]  Guo, R., Liu, J., Chai, J., et al. (2022) Scorpion Peptide Smp24 Exhibits a Potent Antitumor Effect on Human Lung Cancer Cells by Damaging the Membrane and Cytoskeleton in Vivo and in Vitro. Toxins, 14, Article No. 438.
https://doi.org/10.3390/toxins14070438
[17]  Ren, Y., Song, H., Wu, Y., et al. (2020) Structural Characterization and Anticancer Potency of Centipede Oligopeptides in Human Chondrosarcoma Cancer: Inducing Apoptosis. RSC Ad-vances, 10, 29780-29788.
https://doi.org/10.1039/D0RA04811A
[18]  Richard, S.A., Kampo, S., Sackey, M., et al. (2020) The Pivotal Poten-tials of Scorpion Buthus martensii Karsch-Analgesic-Antitumor Peptide in Pain Management and Cancer. Evi-dence-Based Complementary and Alternative Medicine, 2020, Article ID: 4234273.
https://doi.org/10.1155/2020/4234273
[19]  Wu, S., Ma, K., Qiao, W.L., et al. (2018) Anti-Metastatic Effect of 131I-Labeled Buthus martensii Karsch Chlorotoxin in Gliomas. International Journal of Molecular Medicine, 42, 3386-3394.
https://doi.org/10.3892/ijmm.2018.3905
[20]  Lu, W., Hu, L., Yang, J., et al. (2018) Isolation and Pharmacological Characterization of a New Cytotoxic L-Amino Acid Oxidase from Bungarus multicinctus Snake Venom. Journal of Ethnopharmacology, 213, 311-320.
https://doi.org/10.1016/j.jep.2017.11.026
[21]  廖共山, 周先果, 班建东, 雷丹青. 牡蛎活性肽对人舌鳞癌Tca8113细胞增殖和凋亡的影响[J]. 山东医药, 2009, 49(47): 13-15.
[22]  Zeng, X. C., Zhou, L., Shi, W., et al. (2013) Three New Antimicrobial Peptides from the Scorpion Pandinus Imperator. Peptides, 45, 28-34.
https://doi.org/10.1016/j.peptides.2013.03.026
[23]  Peng, K., Kong, Y., Zhai, L., et al. (2010) Two Novel Antimi-crobial Peptides from Centipede Venoms. Toxicon: Official Journal of the International Society on Toxinology, 55, 274-279.
https://doi.org/10.1016/j.toxicon.2009.07.040
[24]  Choi, H., Hwang, J.S. and Lee, D.G. (2013) Antifun-gal Effect and Pore-Forming Action of Lactoferricin B like Peptide Derived from Centipede Scolopendra subspinipes mutilans. Biochimica et Biophysica Acta, 1828, 2745-2750.
https://doi.org/10.1016/j.bbamem.2013.07.021
[25]  Choi, H., Hwang, J.S. and Lee, D.G. (2014) Identification of a Novel Antimicrobial Peptide, Scolopendin 1, Derived from Centipede Scolopendra subspinipes mutilans and Its Anti-fungal Mechanism. Insect Molecular Biology, 23, 788-799.
https://doi.org/10.1111/imb.12124
[26]  Lee, H., Hwang, J.S., Lee, J., et al. (2015) Scolopendin 2, a Cationic Anti-microbial Peptide from Centipede, and Its Membrane-Active Mechanism. Biochimica et Biophysica Acta, 1848, 634-642.
https://doi.org/10.1016/j.bbamem.2014.11.016
[27]  张希春, 孙振钧, 禚如朋, 侯全民, 林桂秋. 蚯蚓两种抗菌肽的分离纯化及部分性质[J]. 生物化学与生物物理进展, 2002(6): 955-960.
[28]  Li, Z., Hu, P., Wu, W., et al. (2019) Peptides with Therapeutic Potential in the Venom of the Scorpion Buthus martensii Karsch. Peptides, 115, 43-50.
https://doi.org/10.1016/j.peptides.2019.02.009
[29]  Xiao, Q., Zhang, Z.P., Hou, Y.B., et al. (2022) An-ti-Epileptic/Pro-Epileptic Effects of Sodium Channel Modulators from Buthus martensii Karsch. Acta Physiologica Sinica, 74, 621-632.
[30]  刘侗, 张红印, 杜延佳, 李志成, 张静, 孙佳明, 张辉. 动物类药材现代化质量评价研究[J]. 吉林中医药, 2016, 36(10): 1027-1028+1032.
[31]  李冰宁, 武彦文, 欧阳杰, 孙素琴, 陈舜琮. 应用红外光谱技术研究中药水蛭的炮制过程[J]. 光谱学与光谱分析, 2011, 31(4): 979-982.
[32]  孙素琴, 周群, 秦竹. 中药二维相关红外光谱鉴定图集[M]. 北京: 化学工业出版社, 2003: 154.
[33]  谢晶曦, 常俊标, 王绪明. 红外光谱在有机化学和药物化学中的应用[M]. 北京: 科学出版社, 2001: 304.
[34]  吴文如, 李薇, 赖小平, 马明, 林岚, 魏金津. 地龙药材蛋白质电泳鉴定的初步研究[J]. 广东药学院学报, 2011, 27(3): 267-270.
[35]  卢颖, 江佩芬. 动物药的蛋白电泳鉴别(I)——土鳖虫[J]. 北京中医药大学学报, 1997(6): 45-46.
[36]  侯林, 姬涛, 田景振, 王超. 不同炮制方法对全蝎有效成分和活性的影响[J]. 中草药, 2011, 42(5): 897-899.
[37]  陈振江, 沈瑜琪, 刘焱文. 贵重动物类中药材蛋白质SDS-PAGE的图谱研究[J]. 中药材, 2007(7): 69-771.
[38]  陈佳佳. 蛋白质组学技术在农作物研究中的应用进展[J]. 安徽农业科学, 2010, 38(36): 20549-20550+20553.
[39]  王清蓉, 万德光, 国锦琳, 陈璐. 三斑海马蛋白质组学双向电泳技术的建立与优化[J]. 中国实验方剂学杂志, 2018, 24(5): 50-54.
[40]  黄靖涵, 刘远平. 毛细管电泳在中药分析中的应用[J]. 亚太传统医药, 2016, 12(13): 66-67.
[41]  陈振德, 许重远, 庄志铨, 侯连兵. 穿山甲及其炮制品蛋白多肽高效毛细管电泳法鉴定[J]. 广东药学院学报, 2000(4): 302-304.
[42]  陈振德, 许重远, 谢立. 蛋白多肽高效毛细管电泳法鉴别鸡内金与鸭内金[J]. 中药材, 2002(4): 46-247.
[43]  张朝晖, 范国荣, 徐国钧, 徐珞珊, 王强. 12种海马、海龙类药材高效毛细管电泳法鉴别[J]. 中国中药杂志, 1998(5): 3-4+62.
[44]  吕丹, 唐克慧, 王宇弛, 张春然, 王瑛瑛, 丁文宇, 王术兰. 毛细管电泳法在药物分析研究中的应用[J]. 海峡药学, 2018, 30(3): 19-21.
[45]  熊晓莉, 万书源, 龚来觐, 李鹤. 现代化中药质量控制中液质联用技术的应用与展望[J]. 现代盐化工, 2022, 49(3): 73-75.
[46]  张贵锋, 刘涛, 王前, 罗坚, 秦玉峰, 尤金花, 田守生, 余蓉, 苏志国. 中药阿胶的质量控制方法研究[J]. 药物生物技术, 2009, 16(3): 250-254.
[47]  Liu, R., Huang, Y., Xu, H., et al. (2019) A Strategy for Identifying Species-Specific Peptide Biomarkers in Deer-Hide Gelatin Using Untargeted and Targeted Mass Spectrometry Approaches. Analytica Chimica Acta, 1092, 32-41.
https://doi.org/10.1016/j.aca.2019.09.064
[48]  李彦超, 胡靓君, 张琪, 刘睿, 崔小兵, 柴川, 文红梅. UFLC-MS/MS法分析蜈蚣中3种多肽成分以及在蜈蚣鉴别中的应用[J]. 南京中医药大学学报, 2022, 38(10): 945-952.
[49]  Lin, Z. and Cai, Z. (2018) Negative Ion Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis of Small Molecules by Using Nanostructured Substrate as Matrices. Mass Spectrometry Reviews, 37, 681-696.
https://doi.org/10.1002/mas.21558
[50]  Yang, H., Zheng, J., Wang, H.Y., et al. (2017) Comparative Proteomic Analysis of Three Gelatinous Chinese Medicines and Their Authentications by Tryptic-Digested Peptides Profiling Using Matrix-Assisted Laser Desorption/Ionization-Time of Flight/Time of Flight Mass Spectrometry. Pharmacognosy Maga-zine, 13, 663-667.
https://doi.org/10.4103/pm.pm_54_17
[51]  Zhou, H., Ning, Z., Starr, A.E., et al. (2012) Advancements in Top-Down Proteomics. Analytical Chemistry, 84, 720-734.
https://doi.org/10.1021/ac202882y
[52]  Zhang, X., Liu, Q., Zhou, W., et al. (2018) A Comparative Proteomic Characterization and Nutritional Assessment of Naturally- and Ar-tificially-Cultivated Cordyceps sinensis. Journal of Proteomics, 181, 24-35.
https://doi.org/10.1016/j.jprot.2018.03.029
[53]  张晗星, 钱正明, 苏尧, 刘杏忠, 李文佳, 董彩虹. 冬虫夏草不同发育时期蛋白质组iTRAQ质谱分析[J]. 菌物学报, 2016, 35(4): 411-423.
[54]  咸瑞卿, 杭宝建, 巩丽萍, 王聪聪, 张迅杰, 彭丽, 石峰. 基于特征肽的超高效液相色谱-串联质谱法检测矛头蝮蛇蛇毒种属来源及类凝血酶含量[J]. 色谱, 2022, 40(9): 810-816.
[55]  Liu, Q., Bi, Q., Zhang, J., et al. (2022) A Rapid and Simple Signature Pep-tides-Based Method for Species Authentication of Three Main Commercial Pheretima. Journal of Proteomics, 255, Arti-cle ID: 104456.
https://doi.org/10.1016/j.jprot.2021.104456
[56]  Gu, Y., Zhang, J., Sun, J., et al. (2021) Marker Peptide Screening and Species-Specific Authentication of Pheretima Using Proteomics. Analytical and Bioanalytical Chemistry, 413, 3167-3176.
https://doi.org/10.1007/s00216-021-03254-2
[57]  王玄, 欧阳罗丹, 代春美, 马莉, 肖小河. 动物类中药质量控制的生物评价研究[J]. 中国中药杂志, 2017, 42(12): 2228-2235.
[58]  陈银芳, 章常华, 魏学鑫, 余日跃, 涂秀英. 动物药中蛋白质、氨基酸检测分析研究进展[J]. 时珍国医国药, 2017, 28(1): 186-189.
[59]  黄招明. 浅谈动物药的应用[J]. 光明中医, 2006(1): 27-28.
[60]  王海璐, 李庆杰, 赵海平, 李春义. 动物药材鉴别及质量评价方法研究进展与策略[J]. 中草药, 2018, 49(16): 3942-3949.
[61]  边学峰, 李晶峰, 金力群, 杜延佳, 李志成, 吕金朋, 兰梦, 高旭, 吴楠, 张辉. 对2020年版《中国药典》中动物药质量标准的商榷[J]. 吉林中医药, 2021, 41(6): 809-816.
[62]  赵丽莉. 马鹿茸多肽的制备及质量标准研究[D]: [硕士学位论文]. 沈阳: 辽宁中医药大学, 2018.
[63]  郑洁. 胶类中药蛋白质的分析及鉴定研究[D]: [硕士学位论文]. 镇江: 江苏大学, 2017.
[64]  顾念念, 索亚然, 乔艺涵, 王昭懿, 冯丹, 赵霞, 孟雪丹, 吴怡青, 李朝峰, 赵崇军, 马志强, 林瑞超, 邹迪新. 柱前衍生-HPLC法对水蛭的指纹图谱及其16种氨基酸含量测定研究[J]. 环球中医药, 2020, 13(4): 592-599.
[65]  房蕴歌, 王鹏飞, 朱厚达, 陈两绵, 王智民, 高慧敏, 傅欣彤, 聂晶. 蟾酥药材和饮片(蟾酥粉)的质量标准研究 [J]. 中国中药杂志, 2020, 45(8): 1726-1733.
[66]  王莎莎, 曲悦, 薛大权, 李兰清, 向阳, 张宝徽. 地龙药材的质量标准提升研究[J]. 中国药房, 2019, 30(17): 2379-2383.
[67]  乔艺涵, 孟雪丹, 索亚然, 刘雯雪, 李二文, 王昭懿, 冯丹, 柯尊洪, 林瑞超, 邹迪新. 珍珠层粉氨基酸指纹图谱的构建及氨基酸含量测定的研究[J]. 世界科学技术-中医药现代化, 2019, 21(7): 1353-1363.
[68]  李勇. 不同来源及品种水蛭、地龙中腐胺的含量测定及统计学分析[J]. 辽宁中医药大学学报, 2018, 20(11): 38-40.
[69]  李勇. 九种动物药材氨基酸类成分分析[D]: [硕士学位论文]. 沈阳: 辽宁中医药大学, 2018.
[70]  毕晓黎, 刘梦云, 陈伟韬, 李养学. 金边土鳖中3种核苷类成分质量控制方法研究[J]. 辽宁中医药大学学报, 2018, 20(4): 15-18.
[71]  逯春玲, 王殿波. 九香虫药材中4种核苷类成分的高效液相色谱分析[J]. 辽宁中医杂志, 2017, 44(10): 2155-2157.
[72]  张宇静, 夏晶, 曹帅, 仇佳思, 季申. 3种牛黄中胆汁酸类成分的含量测定与比较[J]. 中药新药与临床药理, 2016, 27(4): 546-551.
[73]  马海芳, 李云, 王昌利, 史亚军. 蜂胶质量标准的研究[J]. 中南药学, 2015, 13(3): 258-262.
[74]  黄文琦, 林葵, 黄岛平, 黄艳. 乌梢蛇氨基酸图谱研究[J]. 蛇志, 2015, 27(1): 4-6.
[75]  顾青青, 安叡, 张艺竹, 于静, 刘自华, 王新宏. 不同产地海螵蛸中核苷类成分测定[J]. 中成药, 2015, 37(5): 1016-1021.
[76]  刘睿, 武文星, 朱悦, 郭盛, 赵明, 曹鹏, 段金廒. 动物药现代研究方法学进展与展望[J]. 南京中医药大学学报, 2022, 38(10): 857-869.
[77]  吴桐, 赵月, 刘苗苗, 谢明, 肖洪贺. 动物药抗肿瘤药理活性研究进展[J]. 亚太传统医药, 2017, 13(18): 81-85.
[78]  郭友立, 谭晓梅. 动物药药理研究概况[J]. 中药药理与临床, 2008(2): 112-115.
[79]  Zhang, Y., Yang, R., Wang, L., et al. (2022) Purification and Characterization of a Novel Thermostable Anticoagulant Protein from Medicinal Leech Whitmania pigra Whitman. Journal of Ethnopharmacology, 288, Article ID: 114990.
https://doi.org/10.1016/j.jep.2022.114990
[80]  Xiao, L., Nie, J., Li, D., et al. (2015) Peptides from Two Sangui-novorous Leeches Analyzed by Ultra-Performance Liquid Chromatography Coupled with Electrospray Ionization Quad-rupole Time-of-Flight Mass Spectrometric Detector. Pharmacognosy Magazine, 11, 32-37.
https://doi.org/10.4103/0973-1296.149699
[81]  Cheng, R.M., Tang, X.P., Long, A.L., et al. (2019) Purification and Characterization of a Novel Anti-Coagulant from the Leech Hirudinaria manillensis. Zoological Research, 40, 205-210.
https://doi.org/10.24272/j.issn.2095-8137.2019.037
[82]  Kwak, H.J., Park, J.S., Medina, J.B.I., et al. (2016) Spa-tiotemporal Expression of Anticoagulation Factor Antistasin in Freshwater Leeches. International Journal of Molecular Sciences, 20, Article No. 3994.
https://doi.org/10.3390/ijms20163994
[83]  Schmitz, T., Paul, G.A.A., Nubbemeyer, B., et al. (2021) NMR-Based Structural Characterization of a Two-Disulfide-Bonded Analogue of the FXIIIa Inhibitor Tridegin: New Insights into Structure-Activity Relationships. International Journal of Molecular Sciences, 22, Article No. 880.
https://doi.org/10.3390/ijms22020880
[84]  Chopin, V., Salzet, M., Baert, J., et al. (2000) Therostasin, a Novel Clotting Factor Xa Inhibitor from the Rhynchobdellid Leech. The Journal of Biological Chemistry, 275, 32701-32707.
https://doi.org/10.1074/jbc.M909217199
[85]  Wu, Y., Hu, S., Ma, Y., Zhao, B., et al. (2020) Novel Pheretima guillelmi-Derived Antithrombotic Protein DPf3: Identification, Characterization, in Vitro Evaluation and Antithrombotic Mechanisms Investigation. International Journal of Biological Macromolecules, 154, 545-556.
https://doi.org/10.1016/j.ijbiomac.2020.03.097
[86]  Yang, H., Shen, Y., Xu, Y., et al. (2015) A Novel Strategy for the Discrimination of Gelatinous Chinese Medicines Based on Enzymatic Digestion Followed by Nano-Flow Liquid Chromatography in Tandem with Orbitrap Mass Spectrum Detection. International Journal of Nanomedicine, 10, 4947-4955.
https://doi.org/10.2147/IJN.S82291
[87]  Kong, Y., Shao, Y., Chen, H., et al. (2013) A Novel Factor Xa-Inhibiting Peptide from Centipedes Venom. International Journal of Peptide Research and Therapeutics, 19, 303-311.
https://doi.org/10.1007/s10989-013-9353-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133