全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Wnt信号通路在肾脏发育中的作用
The Role of Wnt Signaling Pathway in Kidney Development

DOI: 10.12677/ACM.2023.1351158, PP. 8282-8290

Keywords: Wnt信号通路,肾脏,发育,肾脏疾病
Wnt Signaling Pathway
, Kidney, Development, Kidney Disease

Full-Text   Cite this paper   Add to My Lib

Abstract:

Wnt信号通路是在胚胎发育过程中起重要作用的高度保守的信号通路,参与诱导胚胎肾脏发育,也参与了多种肾脏疾病的发生发展,且Wnt信号通路常通过经典信号通路和非经典信号通路来传递信息。当Wnt基因表达异常时会导致肾脏发育异常以及产生肾脏疾病,如先天性肾脏畸形、先天性尿路畸形、多囊肾和肾癌等。通过对不同Wnt配体基因敲除的模型和体外细胞、组织培养等的研究证明了Wnt信号通路在肾脏发育中具有必不可少的作用。此外,研究还发现在诱导肾单位的形成过程中,多种亚型的Wnt配体及其受体和转录的相关靶点表达出现上调,参与调节输尿管芽和后肾间充质的发育和分化等。本文总结了近年来Wnt信号通路在肾脏发育中的研究进展情况,以便为肾脏疾病的临床治疗提供新的方案。
The Wnt signaling pathway is a highly conserved signaling pathway that plays an important role in embryonic development and is involved in the induction of embryonic kidney development, as well as in the development of various renal diseases, and the Wnt signaling pathway often transmits in-formation through both classical and non-classical signaling pathways. When Wnt gene expression is abnormal, it leads to abnormal kidney development and kidney diseases such as congenital kid-ney malformation, congenital urogenital malformation, polycystic kidney and kidney cancer. The essential role of the Wnt signaling pathway in kidney development was demonstrated by studies on different Wnt ligand knockout models and in vitro cell and tissue cultures. In addition, it was found that the expression of multiple isoforms of Wnt ligands and their receptors and transcrip-tion-related targets appear up-regulated during the induction of renal unit formation, which is in-volved in regulating the development and differentiation of ureteral buds and posterior renal mesenchyme, among others. In this paper, we summarize the research progress of Wnt signaling pathway in kidney development in recent years in order to provide new options for clinical treat-ment of kidney diseases.

References

[1]  Nusse, R. and Clevers, H. (2017) Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell, 169, 985-999.
https://doi.org/10.1016/j.cell.2017.05.016
[2]  Grollman, A.P. (2013) Aristolochic Acid Nephropathy: Harbinger of a Global Iatrogenic Disease. Environmental and Molecular Mutagenesis, 54, 1-7.
https://doi.org/10.1002/em.21756
[3]  Medina, M.A., Oza, G., Sharma, A., et al. (2020) Triple-Negative Breast Cancer: A Review of Conventional and Advanced Therapeutic Strategies. International Journal of Environmental Re-search and Public Health, 17, Article No. 2078.
https://doi.org/10.3390/ijerph17062078
[4]  Schunk, S.J., Floege, J., Fliser, D. and Speer, T. (2021) Wnt-β-Catenin Signalling—A Versatile Player in Kidney Injury and Repair. Nature Reviews Nephrology, 17, 172-184.
https://doi.org/10.1038/s41581-020-00343-w
[5]  Valenta, T., Hausmann, G. and Basler, K. (2012) The Many Faces and Functions of β-Catenin. The EMBO Journal, 31, 2714-2736.
https://doi.org/10.1038/emboj.2012.150
[6]  Ma, L. and Wang, H.-Y. (2007) Mitogen-Activated Protein Kinase p38 Regulates the Wnt/Cyclic GMP/Ca2+ Non-canonical Pathway. Journal of Biological Chemistry, 282, 28980-28990.
https://doi.org/10.1074/jbc.M702840200
[7]  Harterink, M. and Korswagen, H.C. (2012) Dissecting the Wnt Se-cretion Pathway: Key Questions on the Modification and Intracellular Trafficking of Wnt Proteins. Acta Physiologica, 204, 8-16.
https://doi.org/10.1111/j.1748-1716.2011.02287.x
[8]  Gross, J.C., Chaudhary, V., Bartscherer, K. and Boutros, M. (2012) Active Wnt Proteins Are Secreted on Exosomes. Nature Cell Biology, 14, 1036-1045.
https://doi.org/10.1038/ncb2574
[9]  Hsieh, J.C., Rattner, A., Smallwood, P.M. and Nathans, J. (1999) Biochemi-cal Characterization of Wnt-Frizzled Interactions Using a Soluble, Biologically Active Vertebrate Wnt Protein. Proceed-ings of the National Academy of Sciences of the United States of America, 96, 3546-3551.
https://doi.org/10.1073/pnas.96.7.3546
[10]  Janda, C.Y., Waghray, D., Levin, A.M., Thomas, C. and Garcia, K.C. (2012) Structural Basis of Wnt Recognition by Frizzled. Science, 337, 59-64.
https://doi.org/10.1126/science.1222879
[11]  Tamai, K., Semenov, M., Kato, Y., et al. (2000) LDL-Receptor-Related Proteins in Wnt Signal Transduction. Nature, 407, 530-535.
https://doi.org/10.1038/35035117
[12]  Ren, Q., Chen, J. and Liu, Y. (2021) LRP5 and LRP6 in Wnt Signaling: Similarity and Divergence. Frontiers in Cell and Developmental Biology, 9, Article 670960.
https://doi.org/10.3389/fcell.2021.670960
[13]  Li, Z., Zhou, L., Wang, Y., et al. (2017) (Pro)Renin Receptor Is an Amplifier of Wnt/β-Catenin Signaling in Kidney Injury and Fibrosis. Journal of the American Society of Nephrology, 28, 2393-2408.
https://doi.org/10.1681/ASN.2016070811
[14]  Riediger, F., Quack, I., Qadri, F., et al. (2011) Prorenin Receptor Is Essential for Podocyte Autophagy and Survival. Journal of the American Society of Nephrology, 22, 2193-2202.
https://doi.org/10.1681/ASN.2011020200
[15]  Oishi, I., Suzuki, H., Onishi, N., et al. (2003) The Receptor Tyro-sine Kinase Ror2 Is Involved in Non-Canonical Wnt5a/JNK Signalling Pathway. Genes to Cells, 8, 645-654.
https://doi.org/10.1046/j.1365-2443.2003.00662.x
[16]  Iglesias, D.M., Hueber, P.A., Chu, L., et al. (2007) Ca-nonical WNT Signaling during Kidney Development. American Journal of Physiology-Renal Physiology, 293, F494-F500.
https://doi.org/10.1152/ajprenal.00416.2006
[17]  Saxén, L. and Sariola, H. (1987) Early Organogene-sis of the Kidney. Pediatric Nephrology, 1, 385-392.
https://doi.org/10.1007/BF00849241
[18]  Kispert, A., Vainio, S. and McMahon, A.P. (1998) Wnt-4 Is a Mesen-chymal Signal for Epithelial Transformation of Metanephric Mesenchyme in the Developing Kidney. Development, 125, 4225-4234.
https://doi.org/10.1242/dev.125.21.4225
[19]  Karner, C., Chirumamilla, R., Aoki, S., et al. (2009) Wnt9b Signaling Regulates Planar Cell Polarity and Kidney Tubule Morphogenesis. Nature Genetics, 41, 793-799.
https://doi.org/10.1038/ng.400
[20]  Carroll, T.J., Park, J.S., Hayashi, S. Majumdar, A. and McMahon, A.P. (2005) Wnt9b Plays a Central Role in the Regulation of Mesenchymal to Epithelial Transitions Underlying Organogenesis of the Mammalian Urogenital System. Developmental Cell, 9, 283-292.
https://doi.org/10.1016/j.devcel.2005.05.016
[21]  Stark, K., Vainio, S., Vassileva, G. and McMahon, A.P. (1994) Epithelial Transformation of Metanephric Mesenchyme in the Developing Kidney Regulated by Wnt-4. Nature, 372, 679-683.
https://doi.org/10.1038/372679a0
[22]  Grieshammer, U., Cebrián, C., Ilagan, R., et al. (2005) FGF8 Is Required for Cell Survival at Distinct Stages of Nephrogenesis and for Regulation of Gene Expression in Nascent Neph-rons. Development, 132, 3847-3857.
https://doi.org/10.1242/dev.01944
[23]  Kobayashi, A., Kwan, K.-M., Carroll, T.J., et al. (2005) Distinct and Se-quential Tissue-Specific Activities of the LIM-Class Homeobox Gene Lim1 for Tubular Morphogenesis during Kidney Development. Development, 132, 2809-2823.
https://doi.org/10.1242/dev.01858
[24]  Shan, J., Jokela, T., Skovorodkin, I. and Vainio, S. (2010) Mapping of the Fate of Cell Lineages Generated from Cells That Express the Wnt4 Gene by Time-Lapse during Kidney Development. Differentiation, 79, 57-64.
https://doi.org/10.1016/j.diff.2009.08.006
[25]  Saulnier, D.M.E., Ghanbari, H. and Br?ndli, A.W. (2002) Essential Function of Wnt-4 for Tubulogenesis in the Xenopus Pronephric Kidney. Developmental Biology, 248, 13-28.
https://doi.org/10.1006/dbio.2002.0712
[26]  Schuchardt, A., D'Agati, V., Larsson-Blomberg, L., Costantini, F. and Pachnis, V. (1994) Defects in the Kidney and Enteric Nervous System of Mice Lacking the Tyrosine Kinase Receptor Ret. Nature, 367, 380-383.
https://doi.org/10.1038/367380a0
[27]  Sánchez, M.P., Silos-Santiago, I., Frisén, J., et al. (1996) Renal Agenesis and the Absence of Enteric Neurons in Mice Lacking GDNF. Nature, 382, 70-73.
https://doi.org/10.1038/382070a0
[28]  Lako, M., Strachan, T., Bullen, P., et al. (1998) Isolation, Characterisation and Embryonic Expression of WNT11, a Gene Which Maps to 11q13.5 and Has Possible Roles in the Development of Skeleton, Kidney and Lung. Gene, 219, 101-110.
https://doi.org/10.1016/S0378-1119(98)00393-X
[29]  Majumdar, A., Vainio, S., Kispert, A., McMahon, J. and McMahon, A.P. (2003) Wnt11 and Ret/Gdnf Pathways Cooperate in Reg-ulating Ureteric Branching During Metanephric Kidney Development. Development, 130, 3175-3185.
https://doi.org/10.1242/dev.00520
[30]  Tételin, S. and Jones, E.A. (2010) Xenopus Wnt11b Is Identified as a Po-tential Pronephricinducer. Developmental Dynamics, 239, 148-159.
https://doi.org/10.1002/dvdy.22012
[31]  Pepicelli, C.V., Kispert, A., Rowitch, D.H. and McMahon, A.P. (1997) GDNF Induces Branching and Increased Cell Proliferation in the Ureter of the Mouse. Developmental Biology, 192, 193-198.
https://doi.org/10.1006/dbio.1997.8745
[32]  Pietil?, I., Ellwanger, K., Railo, A., et al. (2011) Secreted Wnt Antag-onist Dickkopf-1controls Kidney Papilla Development Coordinated by Wnt-7b Signalling. Developmental Biology, 353, 50-60.
https://doi.org/10.1016/j.ydbio.2011.02.019
[33]  It?ranta, P., Chi, L., Sepp?nen, T., et al. (2006) Wnt-4 Signaling is Involved in the Control of Smooth Muscle Cell Fate via Bmp-4 in the Medullary Stroma of the Developing Kidney. De-velopmental Biology, 293, 473-483.
https://doi.org/10.1016/j.ydbio.2006.02.019
[34]  Lyons, J.P., Mueller, U.W., Ji, H., Everett, C., Fang, X., Hsieh, J.C., Barth, A.M. and McCrea, P.D. (2004) Wnt-4 Activates the Canonical β-Catenin-Mediated Wnt Pathway and Binds Frizzled-6 CRD: Functional Implications of Wnt/β-Catenin Activity in Kidney Epithelial Cells. Experimental Cell Re-search, 298, 369-387.
https://doi.org/10.1016/j.yexcr.2004.04.036
[35]  Pietil?, I., Prunskaite-Hyyryl?inen, R., Kaisto, S., et al. (2016) Wnt5a Deficiency Leads to Anomalies in Ureteric Tree Development, Tubular Epithelial Cell Organization and Basement Membrane Integrity Pointing to a Role in Kidney Collecting Duct Patterning. PLOS ONE, 11, e0147171.
https://doi.org/10.1371/journal.pone.0147171
[36]  Wang, Y., Stokes, A., Duan, Z., et al. (2016) LDL Recep-tor-Related Protein 6 Modulates Ret Proto-Oncogene Signaling in Renal Development and Cystic Dysplasia. Journal of the American Society of Nephrology, 27, 417-427.
https://doi.org/10.1681/ASN.2014100998
[37]  Satow, R., Chan, T.-C. and Asashima, M. (2004) The Role of Xenopus Frizzled-8 in Pronephric Development. Biochemical and Biophysical Research Communications, 321, 487-494.
https://doi.org/10.1016/j.bbrc.2004.06.166
[38]  Ye, X., Wang, Y., Rattner, A. and Nathans, J. (2011) Genetic Mo-saic Analysis Reveals a Major Role for Frizzled 4 and Frizzled 8 in Controlling Ureteric Growth in the Developing Kid-ney. Development, 138, 1161-1172.
https://doi.org/10.1242/dev.057620
[39]  Davies, J.A. and Garrod, D.R. (1995) Induction of Early Stages of Kidney Tubule Differentiation by Lithium Ions. Developmental Biology, 167, 50-60.
https://doi.org/10.1006/dbio.1995.1006
[40]  Kuure, S., Popsueva, A., Jakobson, M., Sainio, K. and Sariola, H. (2007) Glycogen Synthase Kinase-3 Inactivation and Stabilization of β-Catenin Induce Nephron Differentiation in Isolat-ed Mouse and Rat Kidney Mesenchymes. Journal of the American Society of Nephrology, 18, 1130-1139.
https://doi.org/10.1681/ASN.2006111206
[41]  Mohamed, O.A., Clarke, H.J. and Dufort, D. (2004) β-Catenin Signaling Marks the Prospective Site of Primitive Streak Formation in the Mouse Embryo. Developmental Dynamics, 231, 416-424.
https://doi.org/10.1002/dvdy.20135
[42]  Park, J.S., Ma, W., O’Brien, L.L., et al. (2012) Six2 and Wnt Regulate Self-Renewal and Commitment of Nephron Progenitors through Shared Gene Regulatory Networks. De-velopmental Cell, 23, 637-651.
https://doi.org/10.1016/j.devcel.2012.07.008
[43]  Marose, T.D., Merkel, C.E., McMahon, A.P. and Carroll, T.J. (2008) β-Catenin Is Necessary to Keep Cells of Ureteric Bud/wolffian Duct Epithelium in a Precursor State. Develop-mental Biology, 314, 112-126.
https://doi.org/10.1016/j.ydbio.2007.11.016
[44]  Schmidt-Ott, K.M., Masckauchan, T.N., Chen, X., et al. (2007) β-Catenin/TCF/Lef Controls a Differentiation-Associated Transcriptional Program in Renal Epithelial Progenitors. De-velopment, 134, 3177-3190.
https://doi.org/10.1242/dev.006544
[45]  Grouls, S., Iglesias, D.M., Wentzensen, N., et al. (2012) Lineage Specifi-cation of Parietal Epithelial Cells Requires β-Catenin/Wnt Signaling. Journal of the American Society of Nephrology, 23, 63-72.
https://doi.org/10.1681/ASN.2010121257
[46]  PPapakrivopoulou, E., Dean, C.H., Copp, A.J. and Long, D.A. (2014) Planar Cell Polarity and Thekidney. Nephrology Dialysis Transplantation, 29, 1320-1326.
https://doi.org/10.1093/ndt/gft484
[47]  Carroll, T.J. and Das, A. (2011) Planar Cell Polarity in Kidney Develop-ment and Disease. Organogenesis, 7, 180-190.
https://doi.org/10.4161/org.7.3.18320
[48]  Nishita, M., Qiao, S., Miyamoto, M., et al. (2014) Role of Wnt5a-Ror2 Signaling in Morphogenesis of the Metanephric Mesenchyme during Ureteric Budding. Molecular and Cellular Biology, 34, 3096-3105.
https://doi.org/10.1128/MCB.00491-14
[49]  Saadi-Kheddouci, S., Berrebi, D., Romagnolo, B., et al. (2001) Early Development of Polycystic Kidney Disease in Transgenic Mice Expressing an Activated Mutant of the β-Catenin Gene. Oncogene, 20, 5972-5981.
https://doi.org/10.1038/sj.onc.1204825
[50]  Qian, C.-N., Knol, J., Igarashi, P., et al. (2005) Cystic Renal Neoplasia Following Conditional Inactivation of Apc in Mouse Renal Tubular Epithelium. Journal of Biological Chemistry, 280, 3938-3945.
https://doi.org/10.1074/jbc.M410697200
[51]  Wang, W., Li, F., Sun, Y., et al. (2015) Aquaporin-1 Retards Renal Cyst Development in Polycystic Kidney Disease by Inhibition of Wnt Signaling. The FASEB Journal, 29, 1551-1563.
https://doi.org/10.1096/fj.14-260828
[52]  Lancaster, M.A., Louie, C.M., Silhavy, J.L., et al. (2009) Impaired Wnt-β-Catenin Signaling Disrupts Adult Renal Homeostasis and Leads to Cystic Kidney Ciliopathy. Nature Medicine, 15, 1046-1054.
https://doi.org/10.1038/nm.2010
[53]  Bergmann, C., Guay-Woodford, L.M., Harris, P.C., et al. (2018) Polycystic Kidney Disease. Nature Reviews Disease Primers, 4, Article No. 50.
https://doi.org/10.1038/s41572-018-0047-y
[54]  Simons, M. and Walz, G. (2006) Polycystic Kidney Disease: Cell Division without a c(l)ue? Kidney International, 70, 854-864.
https://doi.org/10.1038/sj.ki.5001534
[55]  Fischer, E., Legue, E., Doyen, A., et al. (2006) Defective Planar Cell Polarity in Polycystic Kidney Disease. Nature Genetics, 38, 21-23.
https://doi.org/10.1038/ng1701
[56]  Lancaster, M.A. and Gleeson, J.G. (2010) Cystic Kidney Disease: The Role of Wnt Signaling. Trends in Molecular Medicine, 16, 349-360.
https://doi.org/10.1016/j.molmed.2010.05.004
[57]  Goss, A.M., Tian, Y., Tsukiyama, T., et al. (2009) Wnt2/2b and β-Catenin Signaling Are Necessary and Sufficient to Specify Lung Progenitors in the Foregut. Developmental Cell, 17, 290-298.
https://doi.org/10.1016/j.devcel.2009.06.005

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133