全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

妊娠期高血糖患者黄斑浅层血流变化的研究
A Study of Macular Superficial Blood Flow Changes in Patients with Hyperglycemia during Pregnancy

DOI: 10.12677/ACM.2023.1351153, PP. 8239-8247

Keywords: 光学相干断层扫描血管成像,妊娠期高血糖,黄斑区浅层毛细血管丛,血流密度
Optical Coherence Tomography Angiography
, Gestational Hyperglycemia, Macular Superficial Capillary Plexus, Blood Flow Density

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:采用光学相干断层扫描血管成像(optical coherence tomography angiography, OCTA)观察妊娠期高血糖(hyperglycemia in pregnancy, HIP)患者黄斑区浅层毛细血管丛(superficial capillary plexus, SCP)血流密度的变化,分析HIP视网膜生理病理改变。方法:横断面观察性临床研究。纳入妊娠组和对照组:妊娠组根据妊娠前是否患有糖尿病以及糖耐量试验血糖情况分为高血糖组(HIP组),正常血糖组。其中,高血糖组分为孕前糖尿病(pregestational diabetes mellitus, PGDM)和妊娠期糖尿病(gestational diabetes mellitus, GDM)两个小组;正常血糖组作为孕妇对照组(IP组),健康育龄期女性作为对照组(NP组)。对所有研究对象进行双眼黄斑区OCTA检查,并分析黄斑区SCP的血管长度密度(vessel length density, VLD)、血管灌注密度(vessel perfusion density, VPD)和黄斑中心凹无血管区(foveal avascular zone, FAZ)等参数。结果:本研究对象共98例183眼:HIP组48例92眼(50.27%),其中PGDM组18例34眼,GDM组30例58眼。IP组25例48眼(26.23%),NP组25例43眼(23.50%)。IP组在黄斑区内环及总体区域的SCP-VLD、SCP-VPD低于NP组,差异有统计学意义。GDM组与IP组在黄斑区SCP-VLD、SCP-VPD的差异无统计学意义。PGDM组在黄斑区SCP-VLD低于IP组差异有统计学意义,在黄斑区中心和总体区域的SCP-VPD低于IP组,差异有统计学意义;PGDM组在黄斑区中心区域的SCP-VLD、SCP-VPD低于GDM组,差异有统计学意义。PGDM组的FAZ形态指数低于NP组,差异有统计学意义。结论:妊娠期间的适应性变化包括视网膜血管系统。在妊娠和高血糖状态下,黄斑浅层血流密度降低且内环区域变化显著,PGDM患者变化更加明显。
Objective: To observe the superficial capillary plexus (SCP) blood flow density in the macula of pa-tients with hyperglycemia in pregnancy (HIP) using optical coherence tomography angiography (OCTA). The changes of blood flow density in the superficial capillary plexus (SCP) of the macula in patients with hyperglycemia in pregnancy (HIP) were observed by OCTA to analyze the physio-pathological changes of the HIP retina. Methods: Cross-sectional observational clinical study. Preg-nancy and control groups were included: the pregnancy group was divided into a hyperglycemic group (HIP group), and a normoglycemic group according to whether they had diabetes before pregnancy and the glycemic status of the glucose tolerance test. Among them, the hyperglycemic group was divided into two groups of pregestational diabetes mellitus (PGDM) and gestational dia-betes mellitus (GDM); the normoglycemic group served as a control group for pregnant women (IP group) and healthy women of reproductive age as a control group (NP group). OCTA of the macular area was performed in both eyes and the parameters of vessel length density (VLD), vessel perfu-sion density (VPD) and foveal avascular zone (FAZ) and other parameters were analyzed in the macular SCP of all study subjects. Results: There were 98 cases and 183 eyes in this study: 48 cases and 92 eyes in the HIP group (50.27%), including 18 cases and 34 eyes in the PGDM group and 30 cases and 58 eyes in the GDM group; 25 cases and 48 eyes in the IP group (26.23%) and 25 cases and 43 eyes in the NP group (23.50%). The differences between the GDM group and the IP group in the macular area SCP-VLD and SCP-VPD were not

References

[1]  翁建平. 糖尿病诊疗思维的变迁、实践、探索和展望[J]. 中华糖尿病杂志, 2022, 14(5): 413-415.
[2]  中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 中华内分泌代谢杂志, 2021, 37(4): 311-398.
[3]  (2014) Diagnostic Criteria and Classification of Hyperglycaemia First Detected in Pregnancy: A World Health Organization Guideline. Diabetes Research and Clinical Practice, 103, 341-363.
https://doi.org/10.1016/j.diabres.2013.10.012
[4]  Pouya, S., Inga, P., Paraskevi, S., et al. (2019) Global and Re-gional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabe-tes Federation Diabetes Atlas, 9th Edition. Diabetes Research and Clinical Practice, 157, Article ID: 107843.
https://doi.org/10.1016/j.diabres.2019.107843
[5]  Zhu, W.W., Yang, H.X., Wei, Y.M., et al. (2015) Comparing the Diagnostic Criteria for Gestational Diabetes Mellitus of World Health Organization 2013 with 1999 in Chinese Popu-lation. Chinese Medical Journal, 128, 125-127.
https://doi.org/10.4103/0366-6999.147858
[6]  中华医学会妇产科学分会产科学组, 中华医学会围产医学分会, 中国妇幼保健协会妊娠合并糖尿病专业委员会. 妊娠期高血糖诊治指南(2022) [第一部分] [J]. 中华妇产科杂志, 2022, 57(1): 3-12.
[7]  Pedro, M.F., Ana, M.F., Pedro, M., et al. (2018) Ocular Changes During Pregnancy. Re-vista Brasileira de Ginecologia e Obstetricia: Revista da Federacao Brasileira das Sociedades de Ginecologia e Obste-tricia, 40, 32-42.
[8]  Khong, E.W.C., Chan, H.H.L., Watson, S.L., et al. (2021) Pregnancy and the Eye. Current Opinion in Ophthalmology, 32, 527-535.
https://doi.org/10.1097/ICU.0000000000000778
[9]  Jacqueline, C., Ra-lene, S., Bingyao, T., et al. (2020) Optical Coherence Tomography Angiography in Diabetes and Diabetic Retinopathy. Journal of Clinical Medicine, 9, 1723.
[10]  La, S.C., Carnevali, A., Marchese, A., et al. (2017) Reproducibility and Re-liability of Optical Coherence Tomography Angiography for Foveal Avascular Zone Evaluation and Measurement in Different Settings. Retina (Philadelphia, Pa.), 37, 1636-1641.
https://doi.org/10.1097/IAE.0000000000001426
[11]  Rayan, A.A., Hasenin, A., Rami, D., et al. (2018) Measure-ment of Normative Foveal Avascular Zone Parameters in Healthy Adults Using Optical Coherence Tomography Angi-ography. Journal of VitreoRetinal Diseases, 2, 213-218.
https://doi.org/10.1177/2474126418778492
[12]  中华医学会妇产科学分会产科学组, 中华医学会围产医学分会妊娠合并糖尿病协作组. 妊娠合并糖尿病诊治指南(2014) [J]. 中华妇产科杂志, 2014, 49(8): 561-569.
[13]  Lin, B.R., Lin, F., Su, L., et al. (2021) Relative Postpartum Retinal Vasoconstriction Detected with Optical Coherence To-mography Angiography. Translational Vision Science & Technology, 10, 40.
https://doi.org/10.1167/tvst.10.2.40
[14]  Hepokur, M., G?nen, B., Hamzaoglu, K., et al. (2021) Investigation of Retinal Vascular Changes during Pregnancy Using Optical Coherence Tomography Angiography. Seminars in Oph-thalmology, 36, 19-27.
https://doi.org/10.1080/08820538.2021.1884268
[15]  Chanwimol, K., Balasubramanian, S., Nassisi, M., et al. (2019) Retinal Vascular Changes during Pregnancy Detected with Optical Coherence Tomography Angiography. Inves-tigative Ophthalmology & Visual Science, 60, 2726-2732.
https://doi.org/10.1167/iovs.19-26956
[16]  K?z?ltun?, P.B., Varl?, B., Büyüktepe, T.?., et al. (2020) Ocular Vascu-lar Changes during Pregnancy: An Optical Coherence Tomography Angiography Study. Graefe’s Archive for Clinical and Experimental Ophthalmology, 258, 395-401.
https://doi.org/10.1007/s00417-019-04541-6
[17]  Li, L.J., Tan, K.H., Aris, I.M., et al. (2018) Retinal Vasculature and 5-Year Metabolic Syndrome among Women with Gestational Di-abetes Mellitus. Metabolism, 83, 216-224.
https://doi.org/10.1016/j.metabol.2017.10.004
[18]  Yee, K.H., Tan, K.H., Aris, I.M., et al. (2019) History of Gestational Diabetes Mellitus and Postpartum Maternal Retinal Microvascular Struc-ture and Function. Diabetic Medicine: A Journal of the British Diabetic Association, 36, 784-786.
https://doi.org/10.1111/dme.13928
[19]  Liu, G.D. and Wang, F. (2021) Macular Vascular Changes in Pregnant Women with Gestational Diabetes Mellitus by Optical Coherence Tomography Angiography. BMC Ophthalmology, 21, Article No. 170.
https://doi.org/10.1186/s12886-021-01927-1
[20]  Sugimoto, M., Wakamatsu, Y., Miyata, R., et al. (2019) Rela-tionship between Size of the Foveal Avascular Zone and Carbohydrate Metabolic Disorders during Pregnancy. BioMed Research International, 2019, Article ID: 3261279.
https://doi.org/10.1155/2019/3261279
[21]  汪东生, 杨金奎. 糖尿病视网膜病变发病情况调查与发病机制研究的新进展[J]. 中华眼科医学杂志(电子版), 2016, 6(6): 273-282.
[22]  秦时月, 徐国旭, 张敬法. 炎症因素在糖尿病性黄斑水肿中的作用及展望[J]. 国际眼科杂志, 2022, 22(8): 1281-1287.
[23]  FitzPatrick, A.M. (2022) Is Es-trogen a Missing Culprit in Thyroid Eye Disease? Sex Steroid Hormone Homeostasis Is Key to Other Fibrogenic Auto-immune Diseases—Why Not This One? Frontiers in Immunology, 13, Article ID: 898138.
https://doi.org/10.3389/fimmu.2022.898138
[24]  Nuzzi, R., Scalabrin, S., Becco, A., et al. (2019) Sex Hormones and Optic Nerve Disorders: A Review. Frontiers in Neuroscience, 13, Article No. 57.
https://doi.org/10.3389/fnins.2019.00057
[25]  Gupta, P.D., Johar, K., Nagpal, K., et al. (2005) Sex Hormone Re-ceptors in the Human Eye. Survey of Ophthalmology, 50, 274-284.
https://doi.org/10.1016/j.survophthal.2005.02.005
[26]  Wickham, L.A., Gao, J., Toda, I., et al. (2000) Identification of Androgen, Estrogen and Progesterone Receptor mRNAs in the Eye. Acta Ophthalmologica Scandinavica, 78, 146-153.
https://doi.org/10.1034/j.1600-0420.2000.078002146.x
[27]  Sato, T., Sugawara, J., Aizawa, N., et al. (2017) Lon-gitudinal Changes of Ocular Blood Flow Using Laser Speckle Flowgraphy during Normal Pregnancy. PLOS ONE, 12, e0173127.
https://doi.org/10.1371/journal.pone.0173127
[28]  Carlin, A. (2008) Physiological Changes of Preg-nancy and Monitoring. Best Practice & Research Clinical Obstetrics & Gynaecology, 22, 801-823.
https://doi.org/10.1016/j.bpobgyn.2008.06.005
[29]  Belfort, M.A., Tooke-Miller, C., Allen, J.C., et al. (2001) Changes in Flow Velocity, Resistance Indices, and Cerebral Perfusion Pressure in the Maternal Middle Cerebral Artery Distribution during Normal Pregnancy. Acta Obstetricia et Gynecologica Scandinavica, 80, 104-112.
https://doi.org/10.1034/j.1600-0412.2001.080002104.x
[30]  Flo, K., Wilsgaard, T., V?rtun, A., et al. (2010) A Longitudinal Study of the Relationship between Maternal Cardiac Output Measured by Impedance Cardiography and Uterine Artery Blood Flow in the Second Half of Pregnancy. BJOG: An International Journal of Obstetrics and Gynae-cology, 117, 837-844.
https://doi.org/10.1111/j.1471-0528.2010.02548.x
[31]  Caufriez, A., Frankenne, F., Englert, Y., et al. (1990) Pla-cental Growth Hormone as a Potential Regulator of Maternal IGF-I during Human Pregnancy. The American Journal of Physiology, 258, E1014-E1019.
https://doi.org/10.1152/ajpendo.1990.258.6.E1014
[32]  Lauszus, F., Klebe, J.G., Bek, T. and Flyvbjerg, A. (2003) Increased Serum IGF-I during Pregnancy Is Associated with Progression of Diabetic Retinopathy. Diabetes, 52, 852-856.
https://doi.org/10.2337/diabetes.52.3.852
[33]  Delaey, C. and Van De Voorde, J. (2000) Regulatory Mechanisms in the Retinal and Choroidal Circulation. Ophthalmic Research, 32, 249-256.
https://doi.org/10.1159/000055622
[34]  Meng, L.Z., Wang, Y.W., Zhang, L., et al. (2019) Heterogeneity and Var-iability in Pressure Autoregulation of Organ Blood Flow: Lessons Learned over 100+ Years. Critical Care Medicine, 47, 436-448.
https://doi.org/10.1097/CCM.0000000000003569
[35]  Sathi, D.A. (2022) Commentary: Exercise, Intraocular Pressure, and Ocular Blood Flow. Indian Journal of Ophthalmology, 70, 4234-4236.
https://doi.org/10.4103/ijo.IJO_2238_22
[36]  Kornfield, T.E. and Newman, E.A. (2014) Regulation of Blood Flow in the Retinal Trilaminar Vascular Network. The Journal of Neuroscience: The Official Journal of the Society for Neuro-science, 34, 11504-11513.
https://doi.org/10.1523/JNEUROSCI.1971-14.2014
[37]  Duan, A., Bedggood, P.A., Bui, B.V., et al. (2016) Evi-dence of Flicker-Induced Functional Hyperaemia in the Smallest Vessels of the Human Retinal Blood Supply. PLOS ONE, 11, e0162621.
https://doi.org/10.1371/journal.pone.0162621
[38]  Zong, Y., Xu, H., Yu, J., et al. (2017) Retinal Vascular Autoregulation during Phase IV of the Valsalva Maneuver: An Optical Coherence Tomography Angi-ography Study in Healthy Chinese Adults. Frontiers in Physiology, 8, Article No. 553.
https://doi.org/10.3389/fphys.2017.00553
[39]  Peppiatt, C.M., Howarth, C., Mobbs, P., et al. (2006) Bidirectional Control of CNS Capillary Diameter by Pericytes. Nature, 443, 700-704.
https://doi.org/10.1038/nature05193
[40]  Li, H., Bui, B.V., Cull, G., et al. (2017) Glial Cell Contribution to Basal Vessel Diameter and Pressure-Initiated Vascular Responses in Rat Retina. Investigative Ophthalmology & Visual Science, 58, 1-8.
https://doi.org/10.1167/iovs.16-20804
[41]  Herman, I.M. and D’Amore, P.A. (1985) Microvascular Pericytes Contain Muscle and Nonmuscle Actins. The Journal of Cell Biology, 101, 43-52.
https://doi.org/10.1083/jcb.101.1.43

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133