全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

抗转铁蛋白受体抗体跨血脑屏障改造策略
Modification Strategies of Anti-Transferrin Receptor Antibody across the Blood-Brain Barrier

DOI: 10.12677/PI.2023.123019, PP. 157-166

Keywords: 血脑屏障,中枢神经系统疾病,转铁蛋白受体1,抗体改造
Blood-Brain Barrier
, Central Nervous System Diseases, Transferrin Receptor 1, Antibody Modification

Full-Text   Cite this paper   Add to My Lib

Abstract:

实现有效的跨血脑屏障递送是开发治疗中枢神经系统疾病药物的关键一步,特别是近几年发展迅速的生物药物,如抗体、核酸药物和酶等,在给药以后,这些生物大分子基本上无法进入大脑,需要开发高效的跨脑转运系统。研究人员发现脑毛细血管内皮细胞上的一些转运蛋白具有药物递送的潜力,转铁蛋白受体1(Transferrin receptor 1, TfR1)就是其中之一,多家医药公司或研究机构基于TfR1的跨BBB递送平台开发出了中枢神经系统疾病的治疗药物已经被批准上市或正在进行临床实验,这激发了脑部靶向药物的研发。本文旨在讨论具有跨BBB递送的TfR1抗体的改造,从而为高脑转运效率的TfR1抗体递送平台的开发提供理论基础。
Effective delivery across the blood-brain barrier is a key step in the development of drugs for the treatment of central nervous system diseases. In particular, as the rapid development of biologic drugs in recent years, such as antibodies, nucleic acid drugs and enzymes, after administration, these biomacromolecules are basically unable to enter the brain, so it is necessary to develop an efficient trans-brain transport system. Researchers have found that some transporters on brain capillary endothelial cells have drug delivery potential, and transferrin receptor 1 (Transferrin receptor 1, TfR1) is one of them. Several pharmaceutical companies or research institutions have developed drugs for the treatment of central nervous system diseases based on the trans-BBB delivery platform of TfR1, which have been approved or are undergoing clinical trials. This has spurred the development of targeted drugs for the brain. This paper aims to discuss the modification of TfR1 antibodies with trans-BBB delivery, so as to provide a theoretical basis for the development of a TfR1 antibody delivery platform with high brain transport efficiency.

References

[1]  Zlokovic, B.V. and Apuzzo, M.L. (1998) Strategies to Circumvent Vascular Barriers of the Central Nervous System. Neurosurgery, 43, 877-878.
https://doi.org/10.1097/00006123-199810000-00089
[2]  Terstappen, G.C., Meyer, A.H., Bell, R.D., et al. (2021) Strategies for Delivering Therapeutics across the Blood-Brain Barrier. Nature Reviews Drug Discovery, 20, 362-383.
https://doi.org/10.1038/s41573-021-00139-y
[3]  Redzic, Z. (2011) Molecular Bi-ology of the Blood-Brain and the Blood-Cerebrospinal Fluid Barriers: Similarities and Differences. Fluids and Barriers of the CNS, 8, Article No. 3.
https://doi.org/10.1186/2045-8118-8-3
[4]  Zlokovic, B.V. (2008) The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders. Neuron, 57, 178-201.
https://doi.org/10.1016/j.neuron.2008.01.003
[5]  Brightman, M.W. (1969) Junctions between Intimately Apposed Cell Membranes in the Vertebrate Brain. Journal of Cell Biology, 40, 648-677.
https://doi.org/10.1083/jcb.40.3.648
[6]  Volterra, A. and Meldolesi, J. (2005) Astrocytes, from Brain Glue to Communication Elements: The Revolution Continues. Nature Reviews Neuroscience, 6, 626-640.
https://doi.org/10.1038/nrn1722
[7]  Winkler, E.A., Bell, R.D. and Zlokovic, B.V. (2011) Central Nervous System Pericytes in Health and Disease. Nature Neuroscience, 14, 1398-1405.
https://doi.org/10.1038/nn.2946
[8]  Abbott, N.J. (2002) Astrocyte—Endothelial Interactions and Blood-Brain Barrier Permeability. Journal of Anatomy, 200, 629-638.
https://doi.org/10.1046/j.1469-7580.2002.00064.x
[9]  Abbott, N.J., Ronnback, L. and Hansson, E. (2006) Astrocyte—Endothelial Interactions at the Blood-Brain Barrier. Nature Reviews Neuroscience, 7, 41-53.
https://doi.org/10.1038/nrn1824
[10]  Zonta, M., Angulo, M.C., Gobbo, S., et al. (2003) Neuron-to-Astrocyte Sig-naling Is Central to the Dynamic Control of Brain Microcirculation. Nature Neuroscience, 6, 43-50.
https://doi.org/10.1038/nn980
[11]  Iadecola, C. (2004) Neurovascular Regulation in the Normal Brain and in Alz-heimer’s Disease. Nature Reviews Neuroscience, 5, 347-360.
https://doi.org/10.1038/nrn1387
[12]  Iadecola, C. and Nedergaard, M. (2007) Glial Regulation of the Cerebral Microvasculature. Nature Neuroscience, 10, 1369-1376.
https://doi.org/10.1038/nn2003
[13]  Hawkins, B.T. and Davis, T.P. (2005) The Blood-Brain Barrier/Neurovascular Unit in Health and Disease. Pharmacological Reviews, 57, 173-185.
https://doi.org/10.1124/pr.57.2.4
[14]  Begley, D.J. (2004) ABC Transporters and the Blood-Brain Barrier. Current Pharmaceutical Design, 10, 1295-312.
https://doi.org/10.2174/1381612043384844
[15]  Wong, K., Riaz, M., Xie, Y., et al. (2019) Review of Current Strategies for Delivering Alzheimer’s Disease Drugs across the Blood-Brain Barrier. International Journal of Molecular Sciences, 20, Article 381.
https://doi.org/10.3390/ijms20020381
[16]  Pardridge, W.M. (2020) Treatment of Alzheimer’s Disease and Blood—Brain Barrier Drug Delivery. Pharmaceuticals, 13, Article 394.
https://doi.org/10.3390/ph13110394
[17]  Pardridge, W.M. (2005) The Blood-Brain Barrier: Bottleneck in Brain Drug Development. NeuroRX, 2, 3-14.
https://doi.org/10.1602/neurorx.2.1.3
[18]  Abbott, N.J., Patabendige, A.A.K., Dolman, D.E.M., et al. (2010) Structure and Function of the Blood—Brain Barrier. Neurobiology of Disease, 37, 13-25.
https://doi.org/10.1016/j.nbd.2009.07.030
[19]  St-Amour, I., Paré, I., Alata, W., et al. (2013) Brain Bioavailability of Human Intravenous Immunoglobulin and Its Transport through the Murine Blood–Brain Barrier. Journal of Cerebral Blood Flow & Metabolism, 33, 1983-1992.
https://doi.org/10.1038/jcbfm.2013.160
[20]  Urquhart, L. (2023) Top Companies and Drugs by Sales in 2022. Na-ture Reviews Drug Discovery, 22, 260.
https://doi.org/10.1038/d41573-023-00039-3
[21]  Thomsen, M.S., Johnsen, K.B., Kucharz, K., et al. (2022) Blood—Brain Barrier Transport of Transferrin Receptor-Targeted Nanoparticles. Pharmaceutics, 14, Article 2237.
https://doi.org/10.3390/pharmaceutics14102237
[22]  Maussang, D., Rip, J., Van Kregten, J., et al. (2016) Gluta-thione Conjugation Dose-Dependently Increases Brain-Specific Liposomal Drug Delivery in Vitro and in Vivo. Drug Discovery Today: Technologies, 20, 59-69.
https://doi.org/10.1016/j.ddtec.2016.09.003
[23]  Wiklander, O.P., Nordin, J.Z., O’loughlin, A., et al. (2015) Ex-tracellular Vesicle in Vivo Biodistribution Is Determined by Cell Source, Route of Administration and Targeting. Journal of Extracellular Vesicles, 4, Article ID: 26316.
https://doi.org/10.3402/jev.v4.26316
[24]  Sharma, G., Lakkadwala, S., Modgil, A. and Singh, J. (2016) The Role of Cell-Penetrating Peptide and Transferrin on Enhanced Delivery of Drug to Brain. International Journal of Molecular Sciences, 17, Article 806.
https://doi.org/10.3390/ijms17060806
[25]  Rastall, D.P. and Amalfitano, A. (2015) Recent Advances in Gene Therapy for Lysosomal Storage Disorders. The Application of Clinical Genetics, 8, 157-169.
https://doi.org/10.2147/TACG.S57682
[26]  Moos, T. and Morgan, E.H. (2000) Transferrin and Transferrin Re-ceptor Function in Brain Barrier Systems. Cellular and Molecular Neurobiology, 20, 77-95.
https://doi.org/10.1023/A:1006948027674
[27]  Zhou, X., Smith, Q.R. and Liu, X. (2021) Brain Penetrating Pep-tides and Peptide—Drug Conjugates to Overcome the Blood—Brain Barrier and Target CNS Diseases. WIREs Nano-medicine and Nanobiotechnology, 13, e1695.
https://doi.org/10.1002/wnan.1695
[28]  Moos, T., Oates, P.S. and Morgan, E.H. (1998) Expression of the Neu-ronal Transferrin Receptor Is Age Dependent and Susceptible. Journal of Comparative Neurology, 398, 420-430.
https://doi.org/10.1002/(SICI)1096-9861(19980831)398:3<420::AID-CNE8>3.0.CO;2-1
[29]  Zlokovic, B.V. (2005) Neurovascular Mechanisms of Alzheimer’s Neurodegeneration. Trendsin Neurosciences, 28, 202-208.
https://doi.org/10.1016/j.tins.2005.02.001
[30]  Begley, D.J. and Brightman, M.W. (2003) Structural and Functional Aspects of the Blood-Brain Barrier. Progress in Drug Research, 61, 39-78.
https://doi.org/10.1007/978-3-0348-8049-7_2
[31]  Ullman, J.C., Arguello, A., Getz, J.A., et al. (2020) Brain De-livery and Activity of a Lysosomal Enzyme using A Blood-Brain Barrier Transport Vehicle in Mice. Science Transla-tional Medicine, 12, eaay1163.
https://doi.org/10.1126/scitranslmed.aay1163
[32]  Cummings, J., Lee, G., Zhong, K., Fonseca, J. and Taghva, K. (2021) Alzheimer’s Disease Drug Development Pipeline: 2021. Alzheimer’s & Dementia, 7, e12179.
https://doi.org/10.1002/trc2.12179
[33]  Yu, Y.J., Zhang, Y., Kenrick, M., et al. (2011) Boosting Brain Uptake of a Therapeutic Antibody by Reducing Its Affinity for a Transcytosis Target. Science Translational Medicine, 3, 84ra44.
https://doi.org/10.1126/scitranslmed.3002230
[34]  Bien-Ly, N., Yu, Y.J., Bumbaca, D., et al. (2014) Transferrin Receptor (TfR) Trafficking Determines Brain Uptake of TfR Antibody Affinity Variants. Journal of Experimental Medi-cine, 211, 233-244.
https://doi.org/10.1084/jem.20131660
[35]  Couch, J.A., Yu, Y.J., Zhang, Y., et al. (2013) Addressing Safety Lia-bilities of TfR Bispecific Antibodies that Cross the Blood-Brain Barrier. Science Translational Medicine, 5, 183ra57.
https://doi.org/10.1126/scitranslmed.3005338
[36]  Yu, Y.J., Atwal, J.K., Zhang, Y., et al. (2014) Therapeutic Bispecific Antibodies cross the Blood-Brain Barrier in Nonhuman Primates. Science Translational Medicine, 5, 261ra154.
https://doi.org/10.1126/scitranslmed.3009835
[37]  Moody, P.R., Sayers, E.J., Magnusson, J.P., Alexander, C., Borri, P., Watson, P. and Jones, A.T. (2015) Receptor Crosslinking: A General Method to Trigger Internalization and Lysosomal Targeting of Therapeutic Receptor: Ligand Complexes. Molecular Therapy, 23, 1888-1898.
https://doi.org/10.1038/mt.2015.178
[38]  Hoy, S.M. (2023) Lecanemab: First Approval. Drugs, 83, 359-365.
https://doi.org/10.1007/s40265-023-01851-2
[39]  Hultqvist, G., Syvanen, S., Fang, X.T., et al. (2017) Bivalent Brain Shuttle Increases Antibody Uptake by Monovalent Binding to the Transferrin Receptor. Theranostics, 7, 308-318.
https://doi.org/10.7150/thno.17155
[40]  Morrison, J.I., Metzendorf, N.G., Rofo, F., Petrovic, A. and Hultqvist, G. (2023) A Single-Chain Fragment Constant Design Enables Easy Production of a Monovalent Blood-Brain Barrier Transporter and Provides an Improved Brain Uptake at Elevated Doses. Journal of Neurochemistry, 165, 413-425.
https://doi.org/10.1111/jnc.15768
[41]  Rofo, F., Metzendorf, N.G., Saubi, C., et al. (2022) Blood-Brain Barrier Penetrating Neprilysin Degrades Monomeric Amyloid-Beta in a Mouse Model of Alzheimer’s Disease. Alzheimer's Re-search & Therapy, 14, Article No. 180.
https://doi.org/10.1186/s13195-022-01132-2
[42]  Arguello, A., Mahon, C.S., Calvert, M.E.K., et al. (2022) Mo-lecular Architecture Determines Brain Delivery of a Transferrin Receptor-Targeted Lysosomal Enzyme. Journal of Ex-perimental Medicine, 219, e20211057.
https://doi.org/10.1084/jem.20211057
[43]  陈志南. 抗体药物研发[M]. 上海: 上海交通大学出版社, 2020: 48-50.
[44]  Przybilla, M.J., Stewart, C., Carlson, T.W., et al. (2021) Examination of a Blood-Brain Barrier Targeting Beta-Galactosidase-Monoclonal Antibody Fusion Protein in a Murine Model of GM1-Gangliosidosis. Molecular Genet-ics and Metabolism Reports, 27, Article ID: 100748.
https://doi.org/10.1084/jem.20211057
[45]  Roshanbin, S., Xiong, M., Hultqvist, G., et al. (2022) In Vivo Imaging of Alpha-Synuclein with Antibody-Based PET. Neuropharma-cology, 208, Article ID: 108985.
https://doi.org/10.1016/j.neuropharm.2022.108985
[46]  Bonvicini, G., Syvanen, S., Andersson, K.G., Haaparanta-Solin, M., López-Picón, F. and Sehlin, D. (2022) ImmunoPET Imaging of Amy-loid-Beta in a Rat Model of Alzheimer’s Disease with a Bispecific, Brain-Penetrating Fusion Protein. Translational Neurodegeneration, 11, Article No. 55.
https://doi.org/10.1186/s40035-022-00324-y
[47]  Mayor, S. and Pagano, R.E. (2007) Pathways of Clathrin-Independent Endocytosis. Nature Reviews Molecular Cell Biology, 8, 603-612.
https://doi.org/10.1038/nrm2216
[48]  Tian, X., Liu, X., Ding, J., et al. (2023) An Anti-CD98 Antibody Displaying pH-Dependent Fc-Mediated Tumour-Specific Activity against Multiple Cancers in CD98-Humanized Mice. Nature Bio-medical Engineering, 7, 8-23.
https://doi.org/10.1038/s41551-022-00956-5
[49]  Bogen, J.P., Hinz, S.C., Grzeschik, J., et al. (2019) Dual Func-tion pH Responsive Bispecific Antibodies for Tumor Targeting and Antigen Depletion in Plasma. Frontiers in Immu-nology, 10, Article 1892.
https://doi.org/10.3389/fimmu.2019.01892
[50]  Liu, X., Tian, X., Hao, X., et al. (2022) A Cross-Reactive pH-Dependent EGFR Antibody with Improved Tumor Selectivity and Penetration Obtained by Structure-Guided Engi-neering. Molecular Therapy-Oncolytics, 27, 256-269.
https://doi.org/10.1016/j.omto.2022.11.001
[51]  Sade, H., Baumgartner, C., Hugenmatter, A., Moessner, E., Freskg?rd, P.-O. and Niewoehner, J. (2014) A Human Blood-Brain Barrier Transcytosis Assay Reveals Antibody Transcytosis Influenced by pH-Dependent Receptor Binding. PLOS ONE, 9, e96340.
https://doi.org/10.1371/journal.pone.0096340
[52]  Watkins, J.M. and Watkins, J.D. (2022) An Engineered Mono-valent Anti-TNF-α Antibody with pH-Sensitive Binding Abrogates Immunogenicity in Mice following a Single Intrave-nous Dose. The Journal of Immunology, 209, 829-839.
https://doi.org/10.4049/jimmunol.2101180
[53]  Zhang, Y., Du, X., Liu, M., et al. (2019) Hijacking Anti-body-Induced CTLA-4 Lysosomal Degradation for Safer and More Effective Cancer Immunotherapy. Cell Research, 29, 609-627.
https://doi.org/10.1038/s41422-019-0184-1
[54]  Lee, P.S., Macdonald, K.G., Massi, E., et al. (2022) Im-proved Therapeutic Index of an Acidic pH-Selective Antibody. mAbs, 14, Article ID: 2024642.
https://doi.org/10.1080/19420862.2021.2024642
[55]  Li, Y., Liu, J., Chen, W., et al. (2023) A pH-Dependent An-ti-CD47 Antibody that Selectively Targets Solid Tumors and Improves Therapeutic Efficacy and Safety. Journal of He-matology & Oncology, 16, Article No. 2.
https://doi.org/10.1186/s13045-023-01399-4
[56]  Igawa, T., Ishii, S., Tachibana, T., et al. (2010) Antibody Recy-cling by Engineered pH-Dependent Antigen Binding Improves the Duration of Antigen Neutralization. Nature Biotech-nology, 28, 1203-1207.
https://doi.org/10.1038/nbt.1691
[57]  Sheridan, D., Yu, Z.X., Zhang, Y., et al. (2018) Design and Preclinical Characterization of ALXN1210: A Novel Anti-C5 Antibody with Extended Duration of Action. PLOS ONE, 13, e0195909.
https://doi.org/10.1371/journal.pone.0195909
[58]  Sulea, T., Rohani, N., Baardsnes, J., et al. (2020) Struc-ture-Based Engineering of pH-Dependent Antibody Binding for Selective Targeting of Solid-Tumor Microenvironment. mAbs, 12, Article ID: 1682866.
https://doi.org/10.1080/19420862.2019.1682866
[59]  Chaparro-Riggers, J., Liang, H., Devay, R.M., et al. (2012) Increasing Serum Half-Life and Extending Cholesterol Lowering in Vivo by Engineering Antibody with pH-Sensitive Binding to PCSK9. Journal of Biological Chemistry, 287, 11090-11097.
https://doi.org/10.1074/jbc.M111.319764
[60]  Bonvin, P., Venet, S., Fontaine, G., et al. (2015) De Novo Isolation of Antibodies with pH-Dependent Binding Properties. MAbs, 7, 294-302.
https://doi.org/10.1080/19420862.2015.1006993
[61]  Zou, W., Huang, C., Sun, Q., Zhao, K., Gao, H., Su, R. and Li, Y. (2022) A Stepwise Mutagenesis Approach Using Histidine and Acidic Amino Acid to Engineer Highly pH-Dependent Protein Switches. 3 Biotech, 12, Article No. 21.
https://doi.org/10.1007/s13205-021-03079-x
[62]  Pardridge, W.M. (2022) Blood-Brain Barrier Delivery for Ly-sosomal Storage Disorders with IgG-Lysosomal Enzyme Fusion Proteins. Advanced Drug Delivery Reviews, 184, Arti-cle No. 114234.
https://doi.org/10.1016/j.addr.2022.114234
[63]  Islam, M.R., Grubb, J.H. and Sly, W.S. (1993) C-Terminal Pro-cessing of Human β-Glucuronidase. The Propeptide Is Required for Full Expression of Catalytic Activity, Intracellular Retention, and Proper Phosphorylation. The Journal of Biological Chemistry, 268, 22627-22633.
https://doi.org/10.1016/S0021-9258(18)41574-8
[64]  Wilson, P.J., Morris, C.P., Anson, D.S., et al. (1990) Hunter Syndrome: Isolation of an Iduronate-2-Sulfatase cDNA Clone and Analysis of Patient DNA. Proceedings of the National Academy of Sciences of the United States of America, 87, 8531-8535.
https://doi.org/10.1073/pnas.87.21.8531
[65]  Kariolis, M.S., Wells, R.C., Getz, J.A., et al. (2020) Brain Delivery of Therapeutic Proteins Using an Fc Fragment Blood-Brain Barrier Transport Vehicle in Mice and Monkeys. Science Translational Medicine, 12, eaay1359.
https://doi.org/10.1126/scitranslmed.aay1359
[66]  Mihara, E., Watanabe, S., Bashiruddin, N.K., et al. (2021) Las-so-Grafting of Macrocyclic Peptide Pharmacophores Yields Multi-Functional Proteins. Nature Communications, 12, Ar-ticle No. 1543.
https://doi.org/10.1038/s41467-021-21875-0
[67]  Ito, K., Passioura, T. and Suga, H. (2013) Technologies for the synthesis of mRNA-Encoding Libraries and Discovery of Bioactive Natural Product-Inspired Non-Traditional Macrocy-clic Peptides. Molecules, 18, 3502-3528.
https://doi.org/10.3390/molecules18033502
[68]  Sakai, K., Sugano-Nakamura, N., Mihara, E., et al. (2023) De-signing Receptor Agonists with Enhanced Pharmacokinetics by Grafting Macrocyclic Peptides into Fragment Crystalliza-ble Regions. Nature Biomedical Engineering, 7, 164-176.
https://doi.org/10.1038/s41551-022-00955-6
[69]  Yamamoto, R., Yoden, E., Tanaka, N., et al. (2021) Nonclinical Safety Evaluation of Pabinafusp Alfa, an Anti-Human Transferrin Receptor Antibody and Iduronate-2-Sulfatase Fusion Protein, for the Treatment of Neuronopathic Mucopolysaccharidosis Type II. Molecular Genetics and Metabolism Re-ports, 27, Article ID: 100758.
https://doi.org/10.1016/j.ymgmr.2021.100758
[70]  Ruano-Salguero, J.S. and Lee, K.H. (2020) Antibody Transcytosis across Brain Endothelial-Like Cells Occurs Nonspecifically and Independent of FcRn. Scientific Reports, 10, Article No. 3685.
https://doi.org/10.1038/s41598-020-60438-z
[71]  DE LA Rosa, A., Metzendorf, N.G., Morrison, J.I., et al. (2022) Introducing or Removing Heparan Sulfate Binding Sites Does Not Alter Brain Uptake of the Blood-Brain Barrier Shuttle scFv8D3. Scientific Reports, 12, Article No. 21479.
https://doi.org/10.21203/rs.3.rs-2166577/v1
[72]  Clarke, E., Stocki, P., Sinclair, E.H., et al. (2022) A Single Domain Shark Antibody Targeting the Transferrin Receptor 1 Delivers a TrkB Agonist Antibody to the Brain and Provides Full Neuroprotection in a Mouse Model of Parkinson’s Disease. Pharmaceutics, 14, Article 1335.
https://doi.org/10.3390/pharmaceutics14071335
[73]  Hanzatian, K.D, Schwartz, A., Gizatullin, F., et al. (2018) Brain Uptake of Multivalent and Multi-Specific DVD-Ig Proteins after Systemic Admin-istration. mAbs, 10, 765-777.
https://doi.org/10.1080/19420862.2018.1465159

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133