全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dent病研究进展
Advances in the Study of Dent Disease

DOI: 10.12677/ACM.2023.1351145, PP. 8181-8188

Keywords: Dent病,致病机制,治疗
Dent Disease
, Pathogenic Mechanism, Treatment

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dent病(Dent disease)是一种罕见的X连锁隐性遗传肾小管疾病。已被证实CLCN5及OCRL1为其致病基因,另有部分病例致病基因不明。随着Dent病分子遗传学研究的不断深入,关于Dent病的研究有了新的进展,现就Dent病的致病基因及其致病机制、临床表型及治疗进展等方面进行综述。
Dent disease is a rare X-linked recessive kidney tubule disease. It has been confirmed that CLCN5 and OCRL1 are the pathogenic genes, but the pathogenic genes are unknown in some cases. With the deepening of the molecular genetics of Dent disease, new progress has been made in the re-search of Dent disease. This article will explore the progress of Dent disease from the pathogenic genes and their pathogenic mechanisms, clinical phenotype and treatment.

References

[1]  Gianesello, L., Del Prete, D., Anglani, F., et al. (2021) Genetics and Phenotypic Heterogeneity of Dent Disease: The Dark Side of the Moon. Human Genetics, 140, 401-421.
https://doi.org/10.1007/s00439-020-02219-2
[2]  姚勇. 儿童Dent病及临床相关问题[J]. 中华实用儿科临床杂志, 2018, 33(17): 1281-1286.
[3]  Smith, A.J. and Lippiat, J.D. (2010) Direct Endosomal Acidification by the Outwardly Rectifying CLC-5 Cl(?)/H(+) Exchanger. The Journal of Physiology, 588, 2033-2045.
https://doi.org/10.1113/jphysiol.2010.188540
[4]  Bignon, Y., Alekov, A., Frachon, N., et al. (2018) A Novel CLCN5 Pathogenic Mutation Supports Dent Disease with Normal Endosomal Acidification. Human Mutation, 39, 1139-1149.
https://doi.org/10.1002/humu.23556
[5]  Satoh, N., Yamada, H., Yamazaki, O., et al. (2016) A Pure Chloride Channel Mutant of CLC-5 Causes Dent’s Disease via Insufficient V-ATPase Activation. Pflügers Archiv, 468, 1183-1196.
https://doi.org/10.1007/s00424-016-1808-7
[6]  Novarino, G., Weinert, S., Rickheit, G., et al. (2010) Endosomal Chloride-Proton Exchange Rather than Chloride Conductance Is Crucial for Renal Endocytosis. Science, 328, 1398-1401.
https://doi.org/10.1126/science.1188070
[7]  Gianesello, L., Ceol, M., Bertoldi, L., et al. (2020) Genetic Analyses in Dent Disease and Characterization of CLCN5 Mutations in Kidney Biop-sies. International Journal of Molecular Sciences, 21, Article No. 516.
https://doi.org/10.3390/ijms21020516
[8]  Zhai, P., Lv, W., Yang, X., et al. (2022) Renal Expression of CLC-5 and Megalin/Cubilin in Dent-1 Disease with Nonsense Mutations of CLCN5 Gene. Pediatric and Developmental Pa-thology, 25, 397-403.
https://doi.org/10.1177/10935266211065554
[9]  Lee, A., Slattery, C., Nikolic-Paterson, D.J., et al. (2015) Chlo-ride Channel ClC-5 Binds to Aspartyl Aminopeptidase to Regulate Renal Albumin Endocytosis. American Journal of Physiology-Renal Physiology, 308, F784-F792.
https://doi.org/10.1152/ajprenal.00322.2014
[10]  Piwon, N., Günther, W., Schwake, M., et al. (2000) ClC-5 Cl? Channel Disruption Impairs Endocytosis in a Mouse Model for Dent’s Disease. Nature, 408, 369-373.
https://doi.org/10.1038/35042597
[11]  Silva, I.V., Cebotaru, V., Wang, H., et al. (2003) The ClC-5 Knockout Mouse Model of Dent’s Disease Has Renal Hypercalciuria and Increased Bone Turnover. Journal of Bone and Mineral Research, 18, 615-623.
https://doi.org/10.1359/jbmr.2003.18.4.615
[12]  Silva, I.V., Blaisdell, C.J., Guggino, S.E., et al. (2000) PTH Reg-ulates Expression of ClC-5 Chloride Channel in the Kidney. American Journal of Physiology-Renal Physiology, 278, F238-F245.
https://doi.org/10.1152/ajprenal.2000.278.2.F238
[13]  Oltrabella, F., Pietka, G., Ramirez, I.B., et al. (2015) The Lowe Syndrome Protein OCRL1 Is Required for Endocytosis in the Zebrafish Pronephric Tubule. PLOS Genetics, 11, e1005058.
https://doi.org/10.1371/journal.pgen.1005058
[14]  Suruda, C., Tsuji, S., Yamanouchi, S., et al. (2017) Decreased Urinary Excretion of the Ectodomain form of Megalin (A-megalin) in Children with OCRL Gene Mutations. Pediatric Nephrology, 32, 621-625.
https://doi.org/10.1007/s00467-016-3535-x
[15]  Inoue, K., Balkin, D.M., Liu, L., et al. (2017) Kidney Tubular Ablation of Ocrl/Inpp5b Phenocopies Lowe Syndrome Tubulopathy. Journal of the American Society of Nephrology, 28, 1399-1407.
https://doi.org/10.1681/ASN.2016080913
[16]  Festa, B.P., Berquez, M., Gassama, A., et al. (2019) OCRL Defi-ciency Impairs Endolysosomal Function in a Humanized Mouse Model for Lowe Syndrome and Dent Disease. Human Molecular Genetics, 28, 1931-1946.
https://doi.org/10.1093/hmg/ddy449
[17]  Wu, G., Zhang, W., Na, T., et al. (2012) Suppression of Intestinal Cal-cium Entry Channel TRPV6 by OCRL, a Lipid Phosphatase Associated with Lowe Syndrome and Dent Disease. The American Journal of Physiology-Cell Physiology, 302, C1479-C1491.
https://doi.org/10.1152/ajpcell.00277.2011
[18]  Anglani, F., Terrin, L., Brugnara, M., et al. (2018) Hypercalciuria and Nephrolithiasis: Expanding the Renal Phenotype of Donnai-Barrow Syndrome. Clinical Genetics, 94, 187-188.
https://doi.org/10.1111/cge.13242
[19]  Jouret, F., Bernard, A., Hermans, C., et al. (2007) Cystic Fibrosis Is Asso-ciated with a Defect in Apical Receptor-Mediated Endocytosis in Mouse and Human Kidney. Journal of the American Society of Nephrology, 18, 707-718.
https://doi.org/10.1681/ASN.2006030269
[20]  Zhang, Y., Fang, X., Xu, H., et al. (2017) Genetic Analysis of Dent’s Disease and Functional Research of CLCN5 Mutations. DNA and Cell Biology, 36, 1151-1158.
https://doi.org/10.1089/dna.2017.3731
[21]  Wojciechowski, D., Kovalchuk, E., Yu, L., et al. (2018) Barttin Regu-lates the Subcellular Localization and Posttranslational Modification of Human Cl(?)/H(+) Antiporter ClC-5. Frontiers in Physiology, 9, Article No. 1490.
https://doi.org/10.3389/fphys.2018.01490
[22]  Drosataki, E., Maragkou, S., Dermitzaki, K., et al. (2022) Dent-2 Disease with a Bartter-Like Phenotype Caused by the Asp631Glu Mutation in the OCRL Gene. BMC Nephrology, 23, Article No. 182.
https://doi.org/10.1186/s12882-022-02812-9
[23]  Sakakibara, N., Nagano, C., Ishiko, S., et al. (2020) Comparison of Clinical and Genetic Characteristics between Dent Disease 1 and Dent Disease 2. Pediatric Nephrology, 35, 2319-2326.
https://doi.org/10.1007/s00467-020-04701-5
[24]  De Matteis, M.A., Staiano, L., Emma, F., et al. (2017) The 5-Phosphatase OCRL in Lowe Syndrome and Dent Disease 2. Nature Reviews Nephrology, 13, 455-470.
https://doi.org/10.1038/nrneph.2017.83
[25]  Zaniew, M., B?kenkamp, A., Kolbuc, M., et al. (2018) Long-Term Renal Outcome in Children with OCRL Mutations: Retrospective Analysis of a Large International Cohort. Nephrology Dialysis Transplantation, 33, 85-94.
[26]  Ye, Q., Shen, Q., Rao, J., et al. (2020) Multicenter Study of the Clinical Fea-tures and Mutation Gene Spectrum of Chinese Children with Dent Disease. Clinical Genetics, 97, 407-417.
https://doi.org/10.1111/cge.13663
[27]  Hichri, H., Rendu, J., Monnier, N., et al. (2011) From Lowe Syndrome to Dent Disease: Correlations between Mutations of the OCRL1 Gene and Clinical and Biochemical Phenotypes. Human Mutation, 32, 379-388.
https://doi.org/10.1002/humu.21391
[28]  Becker-Cohen, R., Rinat, C., Ben-Shalom, E., et al. (2012) Vitamin A Deficiency Associated with Urinary Retinol Binding Protein Wasting in Dent’s Disease. Pediatric Nephrology, 27, 1097-1102.
https://doi.org/10.1007/s00467-012-2121-0
[29]  Marzuillo, P., Piccolo, V., Mascolo, M., et al. (2018) Patients Af-fected by Dent Disease 2 Could Be Predisposed to Hidradenitis Suppurativa. The Journal of the European Academy of Dermatology and Venereology, 32, e309-e311.
https://doi.org/10.1111/jdv.14860
[30]  Akil, I., Ozen, S., Kandiloglu, A.R., et al. (2010) A Patient with Bartter Syndrome Accompanying Severe Growth Hormone Deficiency and Focal Segmental Glomerulosclerosis. Clinical and Experimental Nephrology, 14, 278-282.
https://doi.org/10.1007/s10157-009-0262-7
[31]  Okamoto, T., Tajima, T., Hirayama, T., et al. (2012) A Patient with Dent Disease and Features of Bartter Syndrome Caused by a Novel Mutation of CLCN5. European Journal of Pe-diatrics, 171, 401-404.
https://doi.org/10.1007/s00431-011-1578-3
[32]  Platt, C., Jadresic, L., Dudley, J., et al. (2014) Dent’s Disease Complicated by an Acute Budd-Chiari Syndrome. BMJ Case Reports, 2014, bcr2013200937.
https://doi.org/10.1136/bcr-2013-200937
[33]  van Zaane, B., Stuijver, D.J., Squizzato, A., et al. (2013) Arterial and Venous Thrombosis in Endocrine Diseases. Seminars in Thrombosis and Hemostasis, 39, 489-495.
https://doi.org/10.1055/s-0033-1343889
[34]  Wang, X., Anglani, F., Beara-Lasic, L., et al. (2016) Glomerular Pa-thology in Dent Disease and Its Association with Kidney Function. Clinical Journal of the American Society of Nephrol-ogy, 11, 2168-2176.
https://doi.org/10.2215/CJN.03710416
[35]  Ceol, M., Tiralongo, E., Baelde, H.J., et al. (2012) Involvement of the Tubular ClC-Type Exchanger ClC-5 in Glomeruli of Human Proteinuric Nephropathies. PLOS ONE, 7, e45605.
https://doi.org/10.1371/journal.pone.0045605
[36]  Preston, R., Naylor, R.W., Stewart, G., et al. (2020) A Role for OCRL in Glomerular Function and Disease. Pediatric Nephrology, 35, 641-648.
https://doi.org/10.1007/s00467-019-04317-4
[37]  Günthner, R., Wagner, M., Thurm, T., et al. (2018) Identification of Co-Occurrence in a Patient with Dent’s Disease and ADA2-Deficiency by Exome Sequencing. Gene, 649, 23-26.
https://doi.org/10.1016/j.gene.2018.01.060
[38]  Yamamura, T., Nozu, K., Minamikawa, S., et al. (2019) Compari-son between Conventional and Comprehensive Sequencing Approaches for Genetic Diagnosis of Alport Syndrome. Mo-lecular Genetics & Genomic Medicine, 7, e883.
https://doi.org/10.1002/mgg3.883
[39]  Blanchard, A., Curis, E., Guyon-Roger, T., et al. (2016) Observations of a Large Dent Disease Cohort. Kidney International, 90, 430-439.
https://doi.org/10.1016/j.kint.2016.04.022
[40]  张宏博, 黄建萍. 药物治疗Dent病15例的临床疗效[J]. 中华实用儿科临床杂志, 2016(3): 226-230.
[41]  张宏文, 王芳. Dent病高钙尿症和蛋白尿药物治疗的临床观察[J]. 中国生育健康杂志, 2016, 27(4): 324-327.
[42]  Deng, H., Zhang, Y., Xiao, H., et al. (2020) Phenotypic Spectrum and Antialbuminuric Response to Angiotensin Converting En-zyme Inhibitor and Angiotensin Receptor Blocker Therapy in Pediatric Dent Disease. Molecular Genetics & Genomic Medicine, 8, e1306.
https://doi.org/10.1002/mgg3.1306
[43]  Cebotaru, V., Kaul, S., Devuyst, O., et al. (2005) High Citrate Diet Delays Progression of Renal Insufficiency in the ClC-5 Knockout Mouse Model of Dent’s Disease. Kidney International, 68, 642-652.
https://doi.org/10.1111/j.1523-1755.2005.00442.x
[44]  Santucci, L., Candiano, G., Anglani, F., et al. (2016) Urine Proteome Analysis in Dent’s Disease Shows High Selective Changes Potentially Involved in Chronic Renal Damage. Journal of Proteomics, 130, 26-32.
https://doi.org/10.1016/j.jprot.2015.08.024
[45]  Gabriel, S.S., Belge, H., Gassama, A., et al. (2017) Bone Marrow Transplantation Improves Proximal Tubule Dysfunction in a Mouse Model of Dent Disease. Kidney International, 91, 842-855.
https://doi.org/10.1016/j.kint.2016.11.016
[46]  Berquez, M., Gadsby, J.R., Festa, B.P., et al. (2020) The Phosphoinositide 3-Kinase Inhibitor Alpelisib Restores Actin Organization and Improves Proximal Tubule Dysfunction in Vitro and in a Mouse Model of Lowe Syndrome and Dent Disease. Kidney International, 98, 883-896.
https://doi.org/10.1016/j.kint.2020.05.040
[47]  Liu, J., Sadeh, T.T., Lippiat, J.D., et al. (2021) Small Molecules Restore the Function of Mutant CLC5 Associated with Dent Disease. Journal of Cellular and Molecular Medicine, 25, 1319-1322.
https://doi.org/10.1111/jcmm.16091

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133