全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

SphK1和微炎症状态在慢性肾脏病中的作用
The Role of SphK1 and Micro-Inflammation in Chronic Kidney Disease

DOI: 10.12677/ACM.2023.1351144, PP. 8174-8180

Keywords: 鞘氨醇激酶1,微炎症状态,慢性肾脏病
Sphingosine Kinase-1
, Micro-Inflammatory State, Chronic Kidney Disease

Full-Text   Cite this paper   Add to My Lib

Abstract:

鞘氨醇激酶1 (Sphingosine Kinase-1, SphK1)是一种广泛存在的脂类激酶,在生物体内参与生长、分化、增殖、凋亡及调节炎症反应等多种病理生理过程。微炎症状态是指炎症因子持续轻度增高的一种无显性感染的炎症状态。目前已证实SphK1、微炎症状态和慢性肾脏病(Chronic Kidney Disease, CKD)均有着密切关系,因此SphK1、微炎症状态在CKD中的作用受到人们越来越多的关注。本文就SphK1和微炎症状态在CKD中的作用研究现状进行综述,重点介绍SphK1、微炎症状态在CKD发生发展中的作用以及SphK1、微炎症状态之间的相互关系。
Sphingosine Kinase-1 (SphK1) is a ubiquitous lipid kinase that participates in various pathophysio-logical processes such as growth, differentiation, proliferation, apoptosis and regulation of inflam-matory response in organisms. The micro-inflammatory state refers to an inflammatory state with-out dominant infection in which inflammatory factors continue to increase slightly. It has been con-firmed that SphK1, micro-inflammatory state and chronic kidney disease (CKD) are closely related, so the role of SphK1 and micro-inflammatory state in CKD has attracted more and more attention. This article reviews the role of SphK1 and microinflammatory state in CKD, focusing on the role of SphK1 and microinflammatory state in the development of CKD and the relationship between SphK1 and microinflammatory state.

References

[1]  Ruiz-Ortega, M., Rayego-Mateos, S., Lamas, S., et al. (2020) Targeting the Progression of Chronic Kidney Disease. Nature Reviews Nephrology, 16, 269-288.
https://doi.org/10.1038/s41581-019-0248-y
[2]  Carney, E.F. (2020) The Impact of Chronic Kidney Disease on Global Health. Nature Reviews Nephrology, 16, 251.
https://doi.org/10.1038/s41581-020-0268-7
[3]  Ahmadmehrabi, S. and Tang, W.H.W. (2018) Hemodialy-sis-Induced Cardiovascular Disease. Seminars in Dialysis, 31, 258-267.
https://doi.org/10.1111/sdi.12694
[4]  Xie, T., Chen, C., Peng, Z., et al. (2020) Erythrocyte Metabolic Reprogramming by Sphingosine 1-Phosphate in Chronic Kidney Disease and Therapies. Circulation Research, 127, 360-375.
https://doi.org/10.1161/CIRCRESAHA.119.316298
[5]  Dai, L., Golembiewska, E., Lindholm, B., et al. (2017) End-Stage Renal Disease, Inflammation and Cardiovascular Outcomes. Contributions to Nephrology, 191, 32-43.
https://doi.org/10.1159/000479254
[6]  Wang, Y. and Gao, L. (2022) Inflammation and Cardiovascular Disease Associated with Hemodialysis for End-Stage Renal Disease. Frontiers in Pharmacology, 13, Article ID: 800950.
https://doi.org/10.3389/fphar.2022.800950
[7]  Vázquez-Victorio, G., González-Espinosa, C., Espinosa-Riquer, Z.P., et al. (2016) GPCRs and Actin-Cytoskeleton Dynamics. Methods in Cell Biology, 132, 165-188.
https://doi.org/10.1016/bs.mcb.2015.10.003
[8]  Li, F., Wang, J., Zhu, Y., et al. (2018) SphK1/S1P Mediates PDGF-Induced Pulmonary Arterial Smooth Muscle Cell Proliferation via miR-21/BMPRII/Id1 Signaling Pathway. Cel-lular Physiology and Biochemistry, 51, 487-500.
https://doi.org/10.1159/000495243
[9]  Bazzazi, H. and Popel, A.S. (2017) Computational Investigation of Sphin-gosine Kinase 1 (SphK1) and Calcium Dependent ERK1/2 Activation Downstream of VEGFR2 in Endothelial Cells. PLOS Computational Biology, 13, e1005332.
https://doi.org/10.1371/journal.pcbi.1005332
[10]  Zhou, F., Wang, Y.K., Zhang, C.G., et al. (2021) miR-19a/b-3p Promotes Inflammation during Cerebral Ischemia/Reperfusion Injury via SIRT1/FoxO3/SPHK1 Pathway. Journal of Neuroinflammation, 18, Article No. 122.
https://doi.org/10.1186/s12974-021-02172-5
[11]  Lau, P., Zhang, G., Zhao, S., et al. (2022) Sphingosine Kinase 1 Promotes Tumor Immune Evasion by Regulating the MTA3-PD-L1 Axis. Cellular & Molecular Immunology, 19, 1153-1167.
https://doi.org/10.1038/s41423-022-00911-z
[12]  Liu, K., Sun, T., Luan, Y., et al. (2022) Berberine Ameliorates Erectile Dysfunction in Rats with Streptozotocin-Induced Diabetes Mellitus through the Attenuation of Apoptosis by Inhibiting the SPHK1/S1P/S1PR2 and MAPK Pathways. Andrology, 10, 404-418.
https://doi.org/10.1111/andr.13119
[13]  Nathan, C. and Ding, A. (2010) Nonresolving Inflammation. Cell, 140, 871-882.
https://doi.org/10.1016/j.cell.2010.02.029
[14]  Medzhitov, R. (2008) Origin and Physiological Roles of Inflamma-tion. Nature, 454, 428-435.
https://doi.org/10.1038/nature07201
[15]  Filiopoulos, V., Hadjiyannakos, D., Takouli, L., et al. (2009) Inflamma-tion and Oxidative Stress in End-Stage Renal Disease Patients Treated with Hemodialysis or Peritoneal Dialysis. The In-ternational Journal of Artificial Organs, 32, 872-882.
https://doi.org/10.1177/039139880903201206
[16]  Jankowska, M., Cobo, G., Lindholm, B., et al. (2017) Inflam-mation and Protein-Energy Wasting in the Uremic Milieu. Contributions to Nephrology, 191, 58-71.
https://doi.org/10.1159/000479256
[17]  Wu, J., Guo, N., Chen, X., et al. (2020) Coexistence of Mi-cro-Inflammatory and Macrophage Phenotype Abnormalities in Chronic Kidney Disease. International Journal of Clini-cal and Experimental Pathology, 13, 317-323.
[18]  Friedrich, B., Alexander, D., Janessa, A., et al. (2006) Acute Effects of Hemodialysis on Cytokine Transcription Profiles: Evidence for C-Reactive Protein-Dependency of Mediator Induction. Kidney International, 70, 2124-2130.
https://doi.org/10.1038/sj.ki.5001865
[19]  Ademowo, O.S., Sharma, P., Cockwell, P., et al. (2020) Distribution of Plasma Oxidised Phosphatidylcholines in Chronic Kidney Disease and Periodontitis as a Co-Morbidity. Free Radical Bi-ology and Medicine, 146, 130-138.
https://doi.org/10.1016/j.freeradbiomed.2019.10.012
[20]  Wu, W., Yang, J.J., Yang, H.M., et al. (2017) Mul-ti-Glycoside of Tripterygium wilfordii Hook. f. Attenuates Glomerulosclerosis in a Rat Model of Diabetic Nephropathy by Exerting Anti-Microinflammatory Effects without Affecting Hyperglycemia. International Journal of Molecular Medicine, 40, 721-730.
https://doi.org/10.3892/ijmm.2017.3068
[21]  Kooman, J.P., Dekker, M.J., Usvyat, L.A., et al. (2017) Inflammation and Premature Aging in Advanced Chronic Kidney Disease. American Journal of Physiolo-gy-Renal Physiology, 313, F938-f950.
https://doi.org/10.1152/ajprenal.00256.2017
[22]  Ebert, T., Pawelzik, S.C., Witasp, A., et al. (2020) Inflammation and Premature Ageing in Chronic Kidney Disease. Toxins (Basel), 12, Article No. 227.
https://doi.org/10.3390/toxins12040227
[23]  Carracedo, M., Artiach, G., Witasp, A., et al. (2019) The G-Protein Coupled Receptor ChemR23 Determines Smooth Muscle Cell Phenotypic Switching to Enhance High Phos-phate-Induced Vascular Calcification. Cardiovascular Research, 115, 1557-1566.
https://doi.org/10.1093/cvr/cvy316
[24]  Kooman, J.P., Kotanko, P., Schols, A.M., et al. (2014) Chronic Kidney Disease and Premature Ageing. Nature Reviews Nephrology, 10, 732-742.
https://doi.org/10.1038/nrneph.2014.185
[25]  Mikolajczyk, T.P. and Guzik, T.J. (2019) Adaptive Immunity in Hy-pertension. Current Hypertension Reports, 21, Article No. 68.
https://doi.org/10.1007/s11906-019-0971-6
[26]  Pedruzzi, L.M., Cardozo, L.F., Daleprane, J.B., et al. (2015) Sys-temic Inflammation and Oxidative Stress in Hemodialysis Patients Are Associated with Down-Regulation of Nrf2. Journal of Nephrology, 28, 495-501.
https://doi.org/10.1007/s40620-014-0162-0
[27]  Stinghen, A.E.M., Massy, Z.A., Vlassara, H., et al. (2016) Ure-mic Toxicity of Advanced Glycation End Products in CKD. Journal of the American Society of Nephrology, 27, 354-370.
https://doi.org/10.1681/ASN.2014101047
[28]  Sanajou, D., Ghorbani Haghjo, A., Argani, H., et al. (2018) AGE-RAGE Axis Blockade in Diabetic Nephropathy: Current Status and Future Directions. European Journal of Pharmacology, 833, 158-164.
https://doi.org/10.1016/j.ejphar.2018.06.001
[29]  Yunna, C., Mengru, H., Lei, W., et al. (2020) Macrophage M1/M2 Polarization. European Journal of Pharmacology, 877, Article ID: 173090.
https://doi.org/10.1016/j.ejphar.2020.173090
[30]  Xu, N., Bo, Q., Shao, R., et al. (2019) Chitinase-3-Like-1 Pro-motes M2 Macrophage Differentiation and Induces Choroidal Neovascularization in Neovascular Age-Related Macular Degeneration. Investigative Ophthalmology & Visual Science, 60, 4596-4605.
https://doi.org/10.1167/iovs.19-27493
[31]  Wilson, M.S. and Wynn, T.A. (2009) Pulmonary Fibrosis: Pathogene-sis, Etiology and Regulation. Mucosal Immunology, 2, 103-121.
https://doi.org/10.1038/mi.2008.85
[32]  Nathan, C. (2022) Nonresolving Inflammation Redux. Immunity, 55, 592-605.
https://doi.org/10.1016/j.immuni.2022.03.016
[33]  Jing, H., Tang, S., Lin, S., et al. (2020) Adiponectin in Renal Fibrosis. Aging (Albany NY), 12, 4660-4672.
https://doi.org/10.18632/aging.102811
[34]  Campanholle, G., Ligresti, G., Gharib, S.A., et al. (2013) Cellular Mechanisms of Tissue Fibrosis. 3. Novel Mechanisms of Kidney Fibrosis. American Journal of Physiology-Cell Physi-ology, 304, C591-C603.
https://doi.org/10.1152/ajpcell.00414.2012
[35]  Li, R., Guo, Y., Zhang, Y., et al. (2019) Salidroside Ameliorates Renal Interstitial Fibrosis by Inhibiting the TLR4/NF-κB and MAPK Signaling Pathways. International Journal of Mo-lecular Sciences, 20, 1103.
https://doi.org/10.3390/ijms20051103
[36]  Baker, D.A., Barth, J., Chang, R., et al. (2010) Genetic Sphingosine Kinase 1 Deficiency Significantly Decreases Synovial Inflammation and Joint Erosions in Murine TNF-Alpha-Induced Arthritis. The Journal of Immunology, 185, 2570-2579.
https://doi.org/10.4049/jimmunol.1000644
[37]  Ding, N., Meng, Y., Liu, L., et al. (2022) Sphingosine Kinase-1 (SPHK1) Promotes Inflammation in Infantile Pneumonia by Reg-ulating NLRP3 Inflammasome and SIRT1 Expression. Histology and Histopathology, 37, 1227-1240.
[38]  Hou, L., Yang, L., Chang, N., et al. (2020) Macrophage Sphingosine 1-Phosphate Receptor 2 Blockade Attenuates Liver Inflam-mation and Fibrogenesis Triggered by NLRP3 Inflammasome. Frontiers in Immunology, 11, Article No. 1149.
https://doi.org/10.3389/fimmu.2020.01149
[39]  Wu, X., Xu, J., Li, X., et al. (2022) Inhibition of SphK1/S1P Sig-naling Pathway Alleviates Fibrosis and Inflammation of Rat Myocardium after Myocardial Infarction. Computational and Mathematical Methods in Medicine, 2022, Article ID: 5985375.
https://doi.org/10.1155/2022/5985375
[40]  Chen, L., Li, L., Song, Y., et al. (2021) Blocking SphK1/S1P/S1PR1 Signaling Pathway Alleviates Lung Injury Caused by Sepsis in Acute Ethanol Intoxication Mice. Inflammation, 44, 2170-2179.
https://doi.org/10.1007/s10753-021-01490-3
[41]  Qu, L., Shi, K., Xu, J., et al. (2022) Atractylenolide-1 Targets SPHK1 and B4GALT2 to Regulate Intestinal Metabolism and Flora Composition to Improve Inflammation in Mice with Colitis. Phytomedicine, 98, Article ID: 153945.
https://doi.org/10.1016/j.phymed.2022.153945

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133