全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于分式模型的非单调自适应信赖域方法
A Nonmonotone Adaptive Trust Region Method Based on Fractional Model

DOI: 10.12677/AAM.2023.125226, PP. 2207-2219

Keywords: 无约束优化,分式模型,非单调信赖域,自适应半径,全局收敛性
Unconstrained Optimization
, Fractional Model, Nonmonotone Trust Region, Adaptive Radius, Global Convergence

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文针对无约束优化问题提出了一个基于分式模型的非单调自适应信赖域的算法。首先用折线法求解子问题,之后算法结合非单调线搜索技术得到步长,产生下一个迭代点,提高算法的收敛速度;并引入自适应半径,避免传统信赖域半径更新的局限性。在一定的假设条件下,证明了该算法具有全局收敛性,数值实验证明了非单调自适应分式模型信赖域算法是有效的并且优于原来求解分式模型的算法,并且比二次模型和锥模型更为有效和稳健。
This paper proposes a nonmonotone adaptive trust region algorithm based on fractional model for unconstrained optimization problems. First, the dogleg step method is used to solve the sub- problem, and then the algorithm combines nonmonotonic line search technology to obtain the step size, generates the next iteration point, and improves the convergence speed of the algorithm; The adaptive radius is introduced to avoid the limitations of traditional trust region radius updating. Under certain assumptions, it is proved that the algorithm has global convergence. Numerical experiments show that the nonmonotonic adaptive fractional model trust region algorithm is effective and superior to the original algorithm for solving fractional models, and is more effective and robust than the quadratic model and the cone model.

References

[1]  袁亚湘, 孙文瑜. 最优化理论与方法[M]. 北京: 科技出版社, 1999.
[2]  Powell, M.J.D. and Yuan, Y.X. (1991) A Trust Region Algorithm for Equality Constrained Optimization. Mathematical Programming, 49, 189-211.
https://doi.org/10.1007/BF01588787
[3]  Davidon, W.C. (1980) Conic Approximations and Collinear Scalings for Optimizers. SIAM Journal on Numerical Analysis, 17, 268-281.
https://doi.org/10.1137/0717023
[4]  Ni, Q. (2005) Optimality Conditions for Trust-Region Subproblems Involving a Conic Model. SIAM Journal on Optimization, 15, 826-837.
https://doi.org/10.1137/S1052623402418991
[5]  Zhu, H., Ni, Q. and Zeng, M. (2015) A Quasi-Newton Trust Region Method Based on a New Fractional Model. Numerical Algebra, Control and Optimization, 5, 237-249.
https://doi.org/10.3934/naco.2015.5.237
[6]  Grippo, L., Lampariello, F. and Lucidi, S. (1986) A Nonmonotone Line Search Technique for Newton’s Method. SIAM Journal on Numerical Analysis, 23, 707-716.
https://doi.org/10.1137/0723046
[7]  Grippo, L., Lampariello, F. and Lucidi, S. (1989) A Truncated Newton Method with Nonmonotone Line Search for Unconstrained Optimization. Journal of Optimization Theory and Applica-tions, 60, 401-419.
https://doi.org/10.1007/BF00940345
[8]  Zhang, H. and Hager, W.W. (2004) A Nonmonotone Line Search Tech-nique and Its Application to Unconstrained Optimization. SIAM Journal on Optimization, 14, 1043-1056.
https://doi.org/10.1137/S1052623403428208
[9]  Ahookhosh, M., Amini, K. and Peyghami, M.R. (2012) A Nonmonotone Trust-Region Line Search Method for Large-Scale Unconstrained Optimization. Applied Mathematical Modelling, 36, 478-487.
https://doi.org/10.1016/j.apm.2011.07.021
[10]  Zhang, X., Zhang, J. and Liao, L. (2002) An Adaptive Trust Re-gion Method and Its Convergence. Science in China Series A: Mathematics, 45, 620-631.
[11]  Shi, Z.J. and Guo, J. (2008) A New Trust Region Method with Adaptive Radius. Computational Optimization and Applications, 41, 225-242.
https://doi.org/10.1007/s10589-007-9099-8
[12]  Cui, Z.R., et al. (2018) A New Adaptive Trust Region Algorithm for Optimization Problems. Acta Mathematica Scientia, 38, 479-496.
https://doi.org/10.1016/S0252-9602(18)30762-8
[13]  Xue, Y., Liu, H. and Liu, Z. (2019) An Improved Nonmon-otone Adaptive Trust Region Method. Applications of Mathematics, 64, 335-350.
https://doi.org/10.21136/AM.2019.0138-18
[14]  Kamandi, A. and Amini, K. (2022) A New Nonmonotone Adap-tive Trust Region Algorithm. Applications of Mathematics, 67, 233-250.
https://doi.org/10.21136/AM.2021.0122-20
[15]  冯琳, 段复建. 基于锥模型的非单调自适应信赖域算法[J]. 山西大学学报: 自然科学版, 2011(4): 580-586.
[16]  王开荣, 曾刘拴. 基于锥模型的非单调自适应信赖域算法[J]. 华中师范大学学报(自然科学版), 2015, 49(2): 171-178.
[17]  陆晓平, 倪勤, 刘浩. 解新锥模型信赖域子问题的折线法[J]. 应用数学学报, 2007, 30(5): 855-871.
[18]  朱红兰, 倪勤, 党创寅, 等. 求解无约束优化问题的分式模型信赖域算法[J]. 中国科学: 数学, 2018, 48(4): 531-546.
[19]  Ahookhosh, M. and Amini, K. (2010) A Nonmonotone Trust Region Method with Adaptive Radius for Unconstrained Optimization Problems. Computers & Mathematics with Applications, 60, 411-422.
https://doi.org/10.1016/j.camwa.2010.04.034
[20]  Moré, J.J., Garbow, B.S. and Hillstrom, K.E. (1981) Testing Unconstrained Optimization Software. ACM Transactions on Mathematical Software (TOMS), 7, 17-41.
https://doi.org/10.1145/355934.355936
[21]  诸梅芳, 薛毅, 张凤圣. 锥模型的拟NEWTON型信赖域方法[J]. 高等学校计算数学学报, 1995, 17(1): 36-47.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133