全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

关于一类具有特殊对称性的牛顿方程周期解的研究
A Study on the Periodic Solutions of a Class of Newton Equations with Special Symmetry

DOI: 10.12677/AAM.2023.125225, PP. 2200-2206

Keywords: 牛顿方程,周期解,存在性,稳定性
Newton Equation
, Periodic Solutions, Existence, Stability

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,对牛顿方程周期解的研究引起了国内外学者的广泛关注。因此,本文对一类具有特殊对称性的牛顿方程非常数周期解存在性和稳定性的研究现状进行了梳理。
In recent years, the study of periodic solutions to Newton’s equations has attracted widespread at-tention from domestic and foreign scholars. Therefore, this paper reviews the current research sta-tus on the existence and stability of non-constant periodic solutions in a class of Newton equations with Special Symmetry.

References

[1]  王高雄, 周之铭, 朱思铭, 等. 常微分方程[M]. 第3版. 北京: 高等教育出版社, 2006.
[2]  Mawhin, J. (1987) Recent Results on Periodic Solutions of the Forced Pendulum Equation. Rendiconti dell’Istituto di Matematica dell’Università di Trieste, 19, 119-129.
[3]  Mawhin, J. (1988) The Forced Pendulum: A Paradigm for Nonlinear Analysis and Dynamical Systems. Expositiones Mathematicae, 6, 271-287.
[4]  Salas, S. and Alvaro, H. (2020) Ana-lytic Solution to the Pendulum Equation for a Given Initial Conditions. Journal of King Saud University Science, 32, 974-978.
https://doi.org/10.1016/j.jksus.2019.07.005
[5]  Magnus, W. and Winkler S. (1966) Hill’s Equations. John Wiley, New York.
[6]  Yin, Z. (2006) Bounded Positive Solutions of Nonlinear Second-Order Differential Equa-tions. Differential Equations, 42, 26-36.
https://doi.org/10.1134/S0012266106010034
[7]  陈太勇, 刘文斌, 张慧星, 等. 二阶微分方程奇调和解的存在性[J]. 应用泛函分析学报, 2006, 8(2): 130-138.
[8]  Zhang, X. (2020) Qua-si-Periodic Solutions for Duffing Equation with Jumping Term. Periodical of Ocean University of China, 50, 145-150.
[9]  Ding, T. and Ding, W. (1985) Resonance Problem for a Class of Duffing’s Equations. Chinese Annals of Mathematics Series B, 6, 427-432.
[10]  Wang, H. and Li, Y. (1995) Periodic Solutions for Duffing Equations. Nonline-ar Analysis: Theory, Methods & Applications, 24, 961-979.
https://doi.org/10.1016/0362-546X(94)00114-W
[11]  Chu, J. and Li, M. (2008) Positive Periodic Solutions of Hill’s Equations with Singular Nonlinear Perturbations. Nonlinear Analysis: Theory, Methods & Applications, 69, 276-286.
https://doi.org/10.1016/j.na.2007.05.016
[12]  Georgiev, Z., Trushev, I., Todorov, T. and Uzunov, I. (2021) Analytical Solution of the Duffing Equation. COMPEL— The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 40, 109-125.
https://doi.org/10.1108/COMPEL-10-2019-0406
[13]  Shadman, D. and Mehri, B. (2005) A Non-Homogeneous Hill’s Equation. Applied Mathematics and Computation, 167, 68-75.
https://doi.org/10.1016/j.amc.2004.06.072
[14]  Liang, S. (2019) Exact Multiplicity and Stability of Periodic Solu-tions for Duffing Equation with Bifurcation Method. Qualitative Theory of Dynamical Systems, 18, 477-493.
https://doi.org/10.1007/s12346-018-0296-x
[15]  Pavanini, G. (1907) Sopra una nuova categoria di soluzioni peri-odiche nel problema di tre corpi. Annali di Matematica Pura ed Applicata, 13, 179-202.
https://doi.org/10.1007/BF02422989
[16]  Macmillan, W.D. (1911) An Integrable Case in the Restricted Problem of Three Bodies. The Astronomical Journal, 27, 625-626.
https://doi.org/10.1086/103918
[17]  Sitnikov, K. (1960) The Existence of Oscillatory Motions in the Three-Body Problem. Doklady Akademii Nauk SSSR, 133, 303-306.
[18]  Markellos, V. (1978) Bifurcations of Straight-Line Oscillations. Astronomy and Astrophysics, 67, 229-240.
[19]  Hagel, J. (1992) A New Analytic Approach to the Sitnikov Problem. Celestial Mechanics and Dynamical Astronomy, 53, 267-292.
https://doi.org/10.1007/BF00052614
[20]  Hagel, J. and Trenkler T. (1993) A Computer Aided Analysis of the Sitnikov Problem. Celestial Mechanics and Dynamical Astronomy, 56, 81-98.
https://doi.org/10.1007/BF00699722
[21]  Alfaro, J.M. and Chiralt, C. (1993) Invariant Rotational Curves in Sit-nikov’s Problem. Celestial Mechanics and Dynamical Astronomy, 55, 351-367.
https://doi.org/10.1007/BF00692994
[22]  Markeev, A.P. (2020) Subharmonic Oscillations in the Near-Circular El-liptic Sitnikov Problem. Mechanics of Solids, 55, 1162-1171.
https://doi.org/10.3103/S0025654420080154
[23]  Shibayama, M. (2019) Variational Construction of Orbits Real-izing Symbolic Sequences in the Planar Sitnikov Problem. Regular and Chaotic Dynamics, 24, 202-211.
https://doi.org/10.1134/S1560354719020060
[24]  Abouelmagd, E.I., Guirao, J.L.G. and Pal, A.K. (2020) Periodic Solution of the Nonlinear Sitnikov Restricted Three- Body Problem. New Astronomy, 75, Article ID: 101319.
https://doi.org/10.1016/j.newast.2019.101319
[25]  Xia, Z. and Cabral, H. (1995) Subharmonic Solutions in the Restricted Three-Body Problem. Discrete and Continuous Dynamical Systems, 1, 463-474.
https://doi.org/10.3934/dcds.1995.1.463
[26]  Corbera, M. and Llibre, J. (2000) Periodic Orbits of the Sitnikov Problem via a Poincaré Map. Celestial Mechanics and Dynamical Astronomy, 77, 273-303.
https://doi.org/10.1023/A:1011117003713
[27]  Corbera, M. and Llibre, J. (2002) On Symmetric Periodic Orbits of the Elliptic Sitnikov Problem via the Analytic Continuation Method. Contemporary Mathematics, 292, 91-127.
https://doi.org/10.1090/conm/292/04918
[28]  Llibre, J. and Ortega, R. (2008) On the Families of Periodic Orbits of the Sitnikov Problem. SIAM Journal on Applied Dynamical Systems, 7, 561-576.
https://doi.org/10.1137/070695253
[29]  Ortega, R. (2016) Symmetric Periodic Solutions in the Sitnikov Problem. Archiv der Mathematik, 107, 405-412.
https://doi.org/10.1007/s00013-016-0931-1
[30]  Belbruno, E., Llibre, J. and Ollé, M. (1994) On the Families of Periodic Orbits which Bifurcate from the Circular Sitnikov Motions. Celestial Mechanics and Dynamical Astronomy, 60, 99-129.
https://doi.org/10.1007/BF00693095
[31]  Jiménez-Lara, L. and Escalona-Buendía, A. (2001) Symmetries and Bifurcations in the Sitnikov Problem. Celestial Mechanics and Dynamical Astronomy, 79, 97-117.
https://doi.org/10.1023/A:1011109827402
[32]  Bountis, T. and Papadakis, K.E. (2009) The Stability of Vertical Motion in the N-Body Circular Sitnikov Problem. Celestial Mechanics and Dynamical Astronomy, 104, 205-225.
https://doi.org/10.1007/s10569-009-9194-5
[33]  Rivera, A. (2013) Periodic Solutions in the Generalized Sitnikov (N+1)-Body Problem. SIAM Journal on Applied Dynamical Systems, 12, 1515-1540.
https://doi.org/10.1137/120883876
[34]  Beltritti, G. (2021) Periodic Solutions of a Generalized Sitnikov Problem. Celestial Mechanics and Dynamical Astronomy, 133, Article No. 6.
https://doi.org/10.1007/s10569-021-10005-z
[35]  Beltritti, G., Mazzone, F. and Oviedo, M. (2018) The Sitnikov Problem for Several Primary Bodies Configurations. Celestial Mechanics and Dynamical Astronomy, 130, Article No. 45.
https://doi.org/10.1007/s10569-018-9838-4
[36]  Beltritti, G. (2022) On the Global Families of Periodic Solu-tions of a Generalized Sitnikov Problem. Celestial Mechanics and Dynamical Astronomy, 134, 1-22.
https://doi.org/10.1007/s10569-022-10068-6
[37]  Ortega, R. (1996) Periodic Solutions of a Newtonian Equation: Stability by the Third Approximation. Journal of Differential Equations, 128, 491-518.
https://doi.org/10.1006/jdeq.1996.0103
[38]  Misquero, M. (2018) Resonance Tongues in the Linear Sitnikov Equa-tion. Celestial Mechanics and Dynamical Astronomy, 130, Article No. 30.
https://doi.org/10.1007/s10569-018-9825-9
[39]  Galán, J., Nú?ez. D. and Rivera, A. (2013) Quantitative Stability of Certain Families of Periodic Solutions in the Sitnikov Problem. SIAM Journal on Applied Dynamical Systems, 17, 52-77.
https://doi.org/10.1137/17M1113990
[40]  Galán, J., Nú?ez, D., Rivera, A.and Riccio, C. (2018) Stability and Bifurcations of even Periodic Orbits in the Sitnikov Problem. Celestial Mechanics and Dynamical Astronomy, 130, 82-101.
https://doi.org/10.1007/s10569-018-9875-z
[41]  Zhang, M.R., Cen, X.L. and Cheng, X.H. (2018) Linear-ized Stability and Instability of Nonconstant Periodic Solutions of Lagrangian Equations. Mathematical Methods in the Applied Sciences, 41, 4853-4866.
https://doi.org/10.1002/mma.4935
[42]  Cen, X.L., Cheng, X.H., Huang, Z.T. and Zhang, M. (2020) On the Stabil-ity of Symmetric Periodic Orbits of the Elliptic Sitnikov Problem. SIAM Journal on Applied Dynamical Systems, 19, 1271-1290.
https://doi.org/10.1137/19M1258384
[43]  Cen, X.L., Liu, C.J. and Zhang, M.R. (2021) A Proof for a Stability Conjecture on Symmetric Periodic Solutions of the Elliptic Sitnikov Problem. SIAM Journal on Applied Dynamical Sys-tems, 20, 941-952.
https://doi.org/10.1137/20M1349692
[44]  Cheng, X., Wang, F. and Liang, Z. (2023) On the Stability of Symmetric Periodic Solutions of the Generalized Elliptic Sitnikov (N+1)-Body Problem. Journal of Differential Equations, 345, 208-232.
https://doi.org/10.1016/j.jde.2022.11.020
[45]  孙国琛, 张志强, 刘佳琦, 等. MEMS微波功率传感器的系统级建模[J]. 电子器件, 2021, 44(6): 1353-1359.
[46]  Chen, H., Chen, X., Lu, J., et al. (2020) Toward Long-Distance Un-derwater Wireless Optical Communication Based on a High-Sensitivity Single Photon Avalanche Diode. IEEE Photonics Journal, 12, 1-10.
[47]  Tang, W.C., Nguyen, T.H. and Howe, R.T. (1989) Laterally Driven Polysilicon Resonant Mi-crostructures. Sensors and Actuators A, 20, 25-32.
https://doi.org/10.1016/0250-6874(89)87098-2
[48]  Nathanson, H.C., Newell, W.E., Wickstrom, R.A., et al. (1967) The Resonant Gate Transistor. IEEE Transactions on Electron De-vices, 14, 117-133.
https://doi.org/10.1109/T-ED.1967.15912
[49]  Taylor, G.I. (1968) The Coalescence of Closely Spaced Drops When They Are at Different Electric Potentials. Proceedings of the Royal Society of London, 306, 423-434.
https://doi.org/10.1098/rspa.1968.0159
[50]  Ai, S. and Pelesko, J.A. (2007) Dynamics of a Canonical Electrostatic MEMS/NEMS System. Journal of Dynamics and Differential Equations, 20, 609-641.
https://doi.org/10.1007/s10884-007-9094-x
[51]  Elata, D. (2005) On the Static and Dynamic Response of Electro-static Actuators. Bulletin of the Polish Academy of Sciences Technical Sciences, 53, 373-384.
[52]  Gutirrez, A. and Torres, P.J. (2013) Nonautonomous Saddle-Node Bifurcation in a Canonical Electrostatic MEMS. International Journal of Bifurcation and Chaos, 23, Article ID: 1350088.
https://doi.org/10.1142/S0218127413500880
[53]  Gutierrez, A., Nú?ez, D. and Rivera, A. (2017) Effects of Voltage Change on the Dynamics in a Comb-Drive Finger of an Electro-static Actuator. International Journal of Non-Linear Mechanics, 95, 224-232.
https://doi.org/10.1016/j.ijnonlinmec.2017.05.008
[54]  Nú?ez, D., Larreal, O. and Murcia, L. (2021) Odd Periodic Oscillations in Comb-Drive Finger Actuators. Nonlinear Analysis: Real World Applications, 61, Article ID: 103347.
https://doi.org/10.1016/j.nonrwa.2021.103347

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133