|
两种不同新型气象雨量观测仪器的一致性对比分析
|
Abstract:
为验证DSG1型降水现象仪和DZZ4型自动气象站在测量降水方面的一致性,利用鲁南地区枣庄国家气象观测站2017年9月至2020年8月5年降水观测资料,对比分析了这两种新型气象雨量观测仪器测量降水的差异。研究结果表明:1) 这两种新型气象雨量观测仪器观测的降水时间基本相同,但DSG1型降水现象仪分钟、小时和日降水量均比DZZ4型自动气象站偏小;2) 在中等降水强度及以下,这两种新型气象雨量观测仪器观测的降水量大小基本一致,但降水强度较大时,降水量大小不同且分散;3) 这两种新型气象雨量观测仪器在地面降水观测业务中都有着比较良好的表现,由于仪器测量原理不同,DSG1型降水现象仪相对于DZZ4型自动气象站有更高的时间及空间分辨率,对于降水开始和结束时刻记录的更早更准确。
In order to verify the consistency of DSG1 precipitation phenomenon instrument and DZZ4 automatic weather station in measuring precipitation, the precipitation observation data of Zaozhuang National Meteorological Observatory in southern Shandong from September 2017 to August 2020 were used to compare and analyze the differences between the two new meteorological precipitation observation instruments in measuring precipitation. The results show that: 1) The precipitation time observed by the two new meteorological rainfall observation instruments is basically the same, but the minute, hour and daily precipitation of the DSG1 precipitation phenomenon instrument is smaller than that of the DZZ4 automatic weather station; 2) At moderate precipitation intensity and below, the precipitation observed by the two new meteorological rainfall observation instruments is basically the same, but when the precipitation intensity is large, the precipitation is different and scattered; 3) The two new meteorological rainfall observation instruments have a relatively good performance in the ground precipitation observation business. Due to the different measuring principles of the instruments, the DSG1 precipitation phenomenon instrument has higher time and spatial resolution than the DZZ4 automatic weather station, and records the beginning and end of precipitation earlier and more accurately.
[1] | 中国气象局. 地面气象观测规范[M]. 北京: 气象出版社, 2003. |
[2] | Sarkar, T., Das, S. and Maitra, A. (2015) As-sessment of Different Raindrop Size Measuring Techniques: Inter-Comparison of Doppler Radar, Impact and Optical Disdrometer. Atmospheric Research, 160, 15-27.
https://doi.org/10.1016/j.atmosres.2015.03.001 |
[3] | 余东升, 徐青山, 徐赤东, 等. 雨滴谱测量技术研究进展[J]. 大气与环境光学学报, 2011, 6(6): 403-408. |
[4] | Kruger, A. and Krajewski, W.F. (2002) Two-Dimensional Video Disdrometer: A Description. Journal of Atmospheric and Oceanic Technology, 19, 602-617. https://doi.org/10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2 |
[5] | 胡云涛, 刘西川, 高太长, 等. 联合降水微物理特征测量仪、激光雨滴谱仪和雨量计的降水对比观测分析[J]. 气象与减灾研究, 2018, 41(2): 133-139. |
[6] | 周黎明, 王俊, 张洪生, 等. 激光雨滴谱仪与自动气象站观测雨量对比分析[J]. 气象科技, 2010, 38(增刊): 113-117. |
[7] | 贾小芹, 郑丽娜, 张子涵, 等. 激光雨滴谱仪探测降水与自动气象站观测降水的对比分析[J]. 海洋气象学报, 2019, 39(1): 123-130. |
[8] | 李力, 姜有山, 蔡凝昊, 等. Parsivel降水粒子谱仪与观测站雨量计的对比分析[J].气象, 2018, 44(3): 434-441. |
[9] | 沙修竹, 丁建芳, 程博. 地面激光雨滴谱仪反演降水参量的特性探究[J]. 气象, 2019, 45(11): 1569-1578. |
[10] | 吴宜, 刘西川, 张军, 等. Parsivel激光雨滴谱仪与雨量计观测降水的一致性分析[J].气象科技, 2022, 48(2): 147-153. |
[11] | 杜波, 张雪芬, 胡树贞, 等. 天气现象仪自动化观测资料对比分析[J]. 气象科技, 2014, 42(4): 617-623. |
[12] | 杜波, 马舒庆, 梁明, 等. 雨滴谱降水现象仪对比观测试验技术应用分析[J]. 气象科技, 2017, 45(6): 995-1001. |
[13] | 杜传耀, 尹隹莉, 李林, 等. 降水现象仪观测应用评估[J]. 气象, 2019, 45(5): 730-737. |
[14] | 申高航, 高安春, 周茂山, 等. DSG5型降水天气现象仪观测数据分析与应用[J]. 气象科技, 2021, 49(1): 40-45. |
[15] | 周坤论, 黄剑钊, 陶伟, 等. 降水类天气现象自动与人工观测质量对比分析[J]. 气象研究与应用, 2022, 43(1): 112-117. |
[16] | 王鹏飞, 李子华. 微观云物理学[M]. 北京: 气象出版社, 1989: 406-408. |
[17] | 付志康, 万蓉, 肖艳姣, 等. 业务DSG5型降水现象仪与Parsivel降水滴谱仪测量参数对比分析[J]. 暴雨灾害, 2022, 41(4): 434-444. |