|
白细胞介素-22与结肠疾病关系的研究进展
|
Abstract:
白细胞介素22 (IL-22)属IL-10家族中的一员,是一种新型的免疫分子,由多种免疫细胞介导产生,但主要靶细胞为非造血细胞,如上皮细胞和基质细胞。IL-22不仅在抗菌免疫及肠道损伤修复中至关重要,同时也在组织损伤和慢性炎症中扮演着重要的角色。越来越多的研究发现,IL-22与多种结肠疾病之间存在着密切的关联,包括溃疡性结肠炎、克罗恩病、肠易激综合征、肠结核、结肠癌等。本文主要讨论有关IL-22的结构、功能等,特别是IL-22在结肠疾病中的复杂作用。
Interleukin 22 (IL-22), a member of the IL-10 family, is a novel immune molecule that is produced mediated by a variety of immune cells, but the main target cells are non-hematopoietic cells, such as epithelial cells and fibroblasts. IL-22 is not only essential in antimicrobial immunity and intesti-nal injury repair, but also plays an important role in tissue damage and chronic inflammation. An increasing number of studies have found a close association between IL-22 and a variety of colon diseases, including ulcerative colitis, Crohn’s disease, irritable bowel syndrome, intestinal tubercu-losis, and colon cancer. This article discusses about the structure and function of IL-22, especially the complex role of IL-22 in colon diseases.
[1] | Nasef, N.A. and Mehta, S. (2020) Role of Inflammation in Pathophysiology of Colonic Disease: An Update. Interna-tional Journal of Molecular Sciences, 21, Article No. 4748. https://doi.org/10.3390/ijms21134748 |
[2] | Nakase, H., Uchino, M., Shinzaki, S., et al. (2021) Evidence-Based Clinical Practice Guidelines for Inflammatory Bowel Disease 2020. Journal of Gastroenterology, 56, 489-526. https://doi.org/10.1007/s00535-021-01784-1 |
[3] | Nikoopour, E., Bellemore, S.M. and Singh, B. (2015) IL-22, Cell Regeneration and Autoimmunity. Cytokine, 74, 35-42. https://doi.org/10.1016/j.cyto.2014.09.007 |
[4] | Keir, M., Yi, Y., Lu, T. and Ghilardi, N. (2020) The Role of IL-22 in Intestinal Health and Disease. Journal of Experimental Medicine, 217, e20192195. https://doi.org/10.1084/jem.20192195 |
[5] | Dumoutier, L., Louahed, J. and Renauld, J.C. (2000) Cloning and Characterization of IL-10-Related T Cell-Derived Inducible Factor (IL-TIF), a Novel Cytokine Structurally Related to IL-10 and Inducible by IL-9. The Journal of Immunology, 164, 1814-1819. https://doi.org/10.4049/jimmunol.164.4.1814 |
[6] | Ouyang, W.J. and O’Garra, A. (2019) IL-10 Family Cytokines IL-10 and IL-22: From Basic Science to Clinical Translation. Immunity, 50, 871-891. https://doi.org/10.1016/j.immuni.2019.03.020 |
[7] | Lopez, D.V. and Kongsbak-Wismann, M. (2022) Role of IL-22 in Homeostasis and Diseases of the Skin. APMIS, 130, 314-322. https://doi.org/10.1111/apm.13221 |
[8] | Zenewicz, L.A. (2018) IL-22: There Is a Gap in Our Knowledge. ImmunoHorizons, 2, 198-207.
https://doi.org/10.4049/immunohorizons.1800006 |
[9] | Eyerich, K., Dimartino, V. and Cavani, A. (2017) IL-17 and IL-22 in Immunity: Driving Protection and Pathology. European Journal of Immunology, 47, 607-614. https://doi.org/10.1002/eji.201646723 |
[10] | Zenewicz, L.A. (2021) IL-22 Binding Protein (IL-22BP) in the Regula-tion of IL-22 Biology. Frontiers in Immunology, 12, Article 766586. https://doi.org/10.3389/fimmu.2021.766586 |
[11] | Pavlidis, P., Tsakmaki, A., Pantazi, E., et al. (2022) Interleu-kin-22 Regulates Neutrophil Recruitment in Ulcerative Colitis and is Associated with Resistance to Ustekinumab Therapy. Nature Communications, 13, Article No. 5820.
https://doi.org/10.1038/s41467-022-33331-8 |
[12] | Li, L.-J., Gong, C., Zhao, M.-H. and Feng, B.-S. (2014) Role of Interleukin-22 in Inflammatory Bowel Disease. World Journal of Gastroenterology, 20, 18177-18188. https://doi.org/10.3748/wjg.v20.i48.18177 |
[13] | Zhao, Y., Liu, Z., Qin, L., Wang, T. and Bai, O. (2021) Insights into the Mechanisms of Th17 Differentiation and the Yin-Yang of Th17 Cells in Human Diseases. Molecular Immunol-ogy, 134, 109-117.
https://doi.org/10.1016/j.molimm.2021.03.010 |
[14] | Wu, B. and Wan, Y. (2020) Molecular Control of Pathogenic Th17 Cells in Autoimmune Diseases. International Immunopharmacology, 80, Article ID: 106187. https://doi.org/10.1016/j.intimp.2020.106187 |
[15] | Hou, Q., Ye, L., Liu, H., et al. (2018) Lactobacillus Accelerates ISCs Regeneration to Protect the Integrity of Intestinal Mucosa through Activation of STAT3 Signaling Pathway Induced by LPLs Secretion of IL-22. Cell Death & Differentiation, 25, 1657-1670. https://doi.org/10.1038/s41418-018-0070-2 |
[16] | Mizoguchi, A., Yano, A., Himuro, H., et al. (2018) Clinical Im-portance of IL-22 Cascade in IBD. Journal of Gastroenterology, 53, 465-474. https://doi.org/10.1007/s00535-017-1401-7 |
[17] | Nagao-Kitamoto, H., Leslie, J.L., Kitamoto, S., et al. (2020) Inter-leukin-22-Mediated Host Glycosylation Prevents Clostridioides difficile Infection by Modulating the Metabolic Activity of the Gut Microbiota. Nature Medicine, 26, 608-617. https://doi.org/10.1038/s41591-020-0764-0 |
[18] | Jin, M., Zhang, H., Wu, M., et al. (2022) Colonic Interleukin-22 Protects Intestinal Mucosal Barrier and Microbiota Abundance in Severe Acute Pancreatitis. The FASEB Journal, 36, e22174. https://doi.org/10.1096/fj.202101371R |
[19] | Behnsen, J., Jellbauer, S., Wong, C.P., et al. (2014) The Cytokine IL-22 Promotes Pathogen Colonization by Suppressing Related Commensal Bacteria. Immunity, 40, 262-273. https://doi.org/10.1016/j.immuni.2014.01.003 |
[20] | Sakemi, R., Mitsuyama, K., Morita, M., et al. (2020) Altered Serum Profile of the Interleukin-22 System in Inflammatory Bowel Disease. Cytokine, 136, Article ID: 155264. https://doi.org/10.1016/j.cyto.2020.155264 |
[21] | Fu, S.-H., Chien, M.-W., Hsu, C.-Y., Liu, Y.-W. and Sytwu, H.-K. (2020) Interplay between Cytokine Circuitry and Transcriptional Regulation Shaping Helper T Cell Pathogenicity and Plasticity in Inflammatory Bowel Disease. International Journal of Molecular Sciences, 21, Article No. 3379. https://doi.org/10.3390/ijms21093379 |
[22] | Nakayama, T., Hirahara, K., Kimura, M.Y., et al. (2021) CD4+ T Cells in Inflammatory Diseases: Pathogenic T-Helper Cells and the CD69-Myl9 System. International Immunology, 33, 699-704. https://doi.org/10.1093/intimm/dxab053 |
[23] | Powell, N., Pantazi, E., Pavlidis, P., et al. (2020) Interleu-kin-22 Orchestrates a Pathological Endoplasmic Reticulum Stress Response Transcriptional Programme in Colonic Epi-thelial Cells. Gut, 69, 578-590.
https://doi.org/10.1136/gutjnl-2019-318483 |
[24] | Fang, L., Pang, Z., Shu, W., et al. (2018) Anti-TNF Therapy In-duces CD4+ T-Cell Production of IL-22 and Promotes Epithelial Repairs in Patients with Crohn’s Disease. Inflammatory Bowel Diseases, 24, 1733-1744.
https://doi.org/10.1093/ibd/izy126 |
[25] | Camilleri, M. (2021) Diagnosis and Treatment of Irritable Bowel Syndrome: A Review. JAMA, 325, 865-877.
https://doi.org/10.1001/jama.2020.22532 |
[26] | Drago, L., Valentina, C. and Fabio, P. (2019) Gut Microbiota, Dysbiosis and Colon Lavage. Digestive and Liver Disease, 51, 1209-1213. https://doi.org/10.1016/j.dld.2019.06.012 |
[27] | Canakis, A., Haroon, M. and Weber, H.C. (2020) Irritable Bowel Syndrome and Gut Microbiota. Current Opinion in Endocrinology & Diabetes and Obesity, 27, 28-35. https://doi.org/10.1097/MED.0000000000000523 |
[28] | Leung, J.M. and Loke, P. (2013) A Role for IL-22 in the Relationship between Intestinal Helminths, Gut Microbiota and Mucosal Immunity. International Journal for Parasitol-ogy, 43, 253-257.
https://doi.org/10.1016/j.ijpara.2012.10.015 |
[29] | Meynier, M., Baudu, E., Rolhion, N., et al. (2022) AhR/IL-22 Pathway as New Target for the Treatment of Post-Infectious Irritable Bowel Syndrome Symptoms. Gut Microbes, 14, Article 2022997.
https://doi.org/10.1080/19490976.2021.2022997 |
[30] | Yu, Z.-Q., Wang, W.-F., Dai, Y.-C., Chen, X.-C. and Chen, J.-Y. (2019) Interleukin-22 Receptor 1 Is Expressed in Multinucleated Giant Cells: A Study on Intestinal Tuberculosis and Crohn’s Disease. World Journal of Gastroenterology, 25, 2473-2488. https://doi.org/10.3748/wjg.v25.i20.2473 |
[31] | Wei, H.-X., Wang, B. and Li, B. (2020) IL-10 and IL-22 in Mucosal Immunity: Driving Protection and Pathology. Frontiers in Immunology, 11, Article 1315. https://doi.org/10.3389/fimmu.2020.01315 |
[32] | Wilson, M.S., Feng, C.G., Barber, D.L., et al. (2010) Redundant and Pathogenic Roles for IL-22 in Mycobacterial, Protozoan, and Helminth Infections. The Journal of Immunology, 184, 4378-4390.
https://doi.org/10.4049/jimmunol.0903416 |
[33] | Ronacher, K., Sinha, R. and Cestari, M. (2018) IL-22: An Under-estimated Player in Natural Resistance to Tuberculosis? Frontiers in Immunology, 9, Article 2209. https://doi.org/10.3389/fimmu.2018.02209 |
[34] | Dhiman, R., Indramohan, M., Barnes, P.F., et al. (2009) IL-22 Produced by Human NK Cells Inhibits Growth of Mycobacterium tuberculosis by Enhancing Phagolysosomal Fusion. The Journal of Immunology, 183, 6639-6645.
https://doi.org/10.4049/jimmunol.0902587 |
[35] | Dhiman, R., Venkatasubramanian, S., Paidipally, P., et al. (2014) Interleukin 22 Inhibits Intracellular Growth of Mycobacterium tuberculosis by Enhancing Calgranulin A Expression. The Journal of Infectious Diseases, 209, 578-587.
https://doi.org/10.1093/infdis/jit495 |
[36] | Benson, A.B., Venook, A.P., Al-Hawary, M.M., et al. (2021) Colon Cancer, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Can-cer Network, 19, 329-359.
https://doi.org/10.6004/jnccn.2021.0012 |
[37] | Men, K., Huang, R., Zhang, X., et al. (2018) Delivery of Interleu-kin-22 Binding Protein (IL-22BP) Gene by Cationic Micelle for Colon Cancer Gene Therapy. RSC Advances, 8, 16537-16548. https://doi.org/10.1039/C8RA02580K |
[38] | Hernandez, P., Gronke, K. and Diefenbach, A. (2018) A Catch-22: Interleukin-22 and Cancer. European Journal of Immunology, 48, 15-31. https://doi.org/10.1002/eji.201747183 |
[39] | Markota, A., Endres, S. and Kobold, S. (2018) Targeting Interleukin-22 for Cancer Therapy. Human Vaccines & Immunotherapeutics, 14, 2012-2015. https://doi.org/10.1080/21645515.2018.1461300 |
[40] | Kirchberger, S., Royston, D.J., Boulard, O., et al. (2013) Innate Lymphoid Cells Sustain Colon Cancer through Production of Interleukin-22 in a Mouse Model. Journal of Ex-perimental Medicine, 210, 917-931.
https://doi.org/10.1084/jem.20122308 |
[41] | Gronke, K., Hernández, P.P., Zimmermann, J., et al. (2019) Interleu-kin-22 Protects Intestinal Stem Cells against Genotoxic Stress. Nature, 566, 249-253. https://doi.org/10.1038/s41586-019-0899-7 |
[42] | Jiang, R. and Sun, B. (2021) IL-22 Signaling in the Tumor Mi-croenvironment. In: Birbrair, A., Ed., Tumor Microenvironment. Advances in Experimental Medicine and Biology, Vol. 1290, Springer, Cham, 81-88.
https://doi.org/10.1007/978-3-030-55617-4_5 |