全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

铜死亡相关基因在癌症中的表达及治疗
Expression of Cuproptosis-Related Genes in Cancer and Treatment

DOI: 10.12677/ACM.2023.1351125, PP. 8034-8044

Keywords: 铜,铜死亡,铜死亡相关基因,抗肿瘤治疗
Copper
, Copper Death, Cuproptosis-Related Genes, Anti-Tumor Therapy

Full-Text   Cite this paper   Add to My Lib

Abstract:

铜依赖性死亡是一种新型的导致细胞死亡的机制,研究中主要鉴定10种铜死亡相关基因(cuproptosis-related genes, CRGs)的表达水平发生异常改变,可能是肿瘤发生的驱动因素之一。目前CRGs在肿瘤中的作用尚未阐明,但在某些对CRGs的研究中,发现CRGs是在肿瘤的发生、发展过程中发挥关键作用的一类基因,它们参与了肿瘤细胞增殖、凋亡、侵袭、转移等多个生物学过程,帮助我们理解了肿瘤的分子机制,为癌症的治疗和预后预测提供参考。此外,CRGs的表达模式和水平在癌症中也会有所不同。CRGs的表达水平可以被用来预测肿瘤的治疗效果和预后。对于某些癌症来说,高表达的CRGs可能预示着肿瘤对特定治疗方法的敏感性,而低表达的CRGs则可能提示治疗效果较差。并且,CRGs的表达水平也可以用于预测患者的生存期和疾病复发率等临床结果。本综述揭示了CRGs在乳腺癌、黑色素瘤、肾癌等各种癌症中的基因组改变和临床特征。
Copper-dependent death is a novel mechanism leading to cell death. In this study, we identified 10 cuproptosis-related genes (CRGs) with abnormal expression levels, which may be one of the driving factors of tumorigenesis. At present, the role of CRGs in tumor has not been elucidated, but in some research on CRGs, it is found that CRGs is a kind of gene that plays a key role in the development of tumor; they are involved in many biological processes, such as cell proliferation, apoptosis, invasion and metastasis, which help us to understand the molecular mechanism of cancer and provide ref-erences for cancer therapy and prognosis prediction. In addition, the expression patterns and levels of CRGs vary in cancer. The expression level of CRGs can be used to predict the therapeutic effect and prognosis of tumor. For some cancers, high expression of CRGs may indicate tumor sensitivity to specific therapies, whereas low expression of CRGs may indicate poor therapeutic efficacy. Further-more, the expression level of CRGs can also be used to predict clinical outcomes such as patient sur-vival and disease recurrence. This review reveals the genomic alterations and clinical features of CRGs in breast cancer, melanoma, renal cell carcinoma and other cancers.

References

[1]  Bray, F., Laversanne, M., Weiderpass, E. and Soerjomataram, I. (2021) The Ever-Increasing Importance of Cancer as a Leading Cause of Premature Death Worldwide. Cancer, 127, 3029-3030.
https://doi.org/10.1002/cncr.33587
[2]  Sung, H., Ferlay, J., Siegel, R., Laversanne, M., Soerjomataram, I. Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[3]  Tsvetkov, P., Coy, S., Petrova, B., et al. (2022) Copper Induces Cell Death by Targeting Lipoylated TCA Cycle Proteins. Science, 375, 1254-1261.
https://doi.org/10.1126/science.abf0529
[4]  Solmonson, A. and DeBerardinis, R.J. (2018) Lipoic Acid Metabo-lism and Mitochondrial Redox Regulation. Journal of Biological Chemistry, 293, 7522-7530.
https://doi.org/10.1074/jbc.TM117.000259
[5]  Rowland, E.A., Snowden, C.K. and Cristea, I.M. (2018) Protein Lipoylation: An Evolutionarily Conserved Metabolic Regulator of Health and Disease. Current Opinion in Chemical Bi-ology, 42, 76-85.
https://doi.org/10.1016/j.cbpa.2017.11.003
[6]  Tsvetkov, P., Detappe, A., Cai, K., et al. (2019) Mitochondrial Metabolism Promotes Adaptation to Proteotoxic Stress. Nature Chemical Biology, 15, 681-689.
https://doi.org/10.1038/s41589-019-0291-9
[7]  da Silva, D.A., De Luca, A., Squitti, R., et al. (2022) Copper in Tumors and the Use of Copper-Based Compounds in Cancer Treatment. Journal of Inorganic Biochemistry, 226, Article ID: 111634.
https://doi.org/10.1016/j.jinorgbio.2021.111634
[8]  Park, K.C., Fouani, L., Jansson, P.J., et al. (2016) Copper and Conquer: Copper Complexes of Di-2-Pyridylketone Thiosemicarbazones as Novel Anti-Cancer Therapeutics. Metallom-ics, 8, 874-886.
https://doi.org/10.1039/C6MT00105J
[9]  Ge, E.J., Bush, A.I., Casini, A., et al. (2022) Connecting Copper and Cancer: From Transition Metal Signalling to Metalloplasia. Nature Reviews Cancer, 22, 102-113.
https://doi.org/10.1038/s41568-021-00417-2
[10]  Bandmann, O., Weiss, K.H. and Kaler, S.G. (2015) Wilson’s Disease and Other Neurological Copper Disorders. The Lancet Neurology, 14, 103-113.
https://doi.org/10.1016/S1474-4422(14)70190-5
[11]  Gaggelli, E., Kozlowski, H., Valensin, D. and Valensin, G. (2006) Copper Homeostasis and Neurodegenerative Disorders (Alzheimer’s, Prion, and Parkinson’s Diseases and Amy-otrophic Lateral Sclerosis). Chemical Reviews, 106, 1995-2044.
https://doi.org/10.1021/cr040410w
[12]  Tang, D., Chen, X. and Kroemer, G. (2022) Cuproptosis: A Copper-Triggered Modality of Mitochondrial Cell Death. Cell Re-search, 32, 417-418.
https://doi.org/10.1038/s41422-022-00653-7
[13]  Feng, Y., Zeng, J.-W., Ma, Q., et al. (2020) Serum Copper and Zinc Levels in Breast Cancer: A Meta-Analysis. Journal of Trace Elements in Medicine and Biology, 62, Article ID: 126629.
https://doi.org/10.1016/j.jtemb.2020.126629
[14]  Lossow, K., Schwarz, M. and Kipp, A.P. (2021) Are Trace Element Concentrations Suitable Biomarkers for the Diagnosis of Cancer? Redox Biology, 42, Article ID: 101900.
https://doi.org/10.1016/j.redox.2021.101900
[15]  Wang, W., Wang, X., Luo, J., et al. (2021) Serum Copper Level and the Copper-to-Zinc Ratio Could Be Useful in the Prediction of Lung Cancer and Its Prognosis: A Case-Control Study in Northeast China. Nutrition and Cancer, 73, 1908-1915.
https://doi.org/10.1080/01635581.2020.1817957
[16]  Denoyer, D., Masaldan, S., La Fontaine, S. and Cater, M.A. (2015) Targeting Copper in Cancer Therapy: ‘Copper That Cancer’. Metallomics, 7, 1459-1476.
https://doi.org/10.1039/C5MT00149H
[17]  Nagai, M., Vo, N.H., Shin Ogawa, L., et al. (2012) The Oncology Drug Elesclomol Selectively Transports Copper to the Mitochondria to Induce Oxidative Stress in Cancer Cells. Free Radical Biology and Medicine, 52, 2142-2150.
https://doi.org/10.1016/j.freeradbiomed.2012.03.017
[18]  Kumar, P. and Aggarwal, R. (2016) An Overview of Triple-Negative Breast Cancer. Archives of Gynecology and Obstetrics, 293, 247-269.
https://doi.org/10.1007/s00404-015-3859-y
[19]  Cocco, S., Piezzo, M., Calabrese, A., et al. (2020) Biomarkers in Triple-Negative Breast Cancer: State-of-the-Art and Future Perspectives. International Journal of Molecular Sciences, 21, Article No. 4579.
https://doi.org/10.3390/ijms21134579
[20]  Sha, S., Si, L., Wu, X., et al. (2022) Prognostic Analysis of Cupropto-sis-Related Gene in Triple-Negative Breast Cancer. Frontiers in Immunology, 13, Article 922780.
https://doi.org/10.3389/fimmu.2022.922780
[21]  Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-Garcia, W., Trevi?o, V., Shen, H., Laird, P.W., Levine, D.A., Carter, S.L., Getz, G., Stemke-Hale, K., Mills, G.B. and Verhaak, R.G. (2013) Inferring Tumour Purity and Stromal and Immune Cell Admixture from Expres-sion Data. Nature Communications, 4, Article 2612.
https://doi.org/10.1038/ncomms3612
[22]  Karaayvaz, M., Cristea, S., Gillespie, S.M., et al. (2018) Unravelling Subclonal Heterogeneity and Aggressive Disease States in TNBC through Single-Cell RNA-Seq. Nature Communications, 9, Article No. 3588.
https://doi.org/10.1038/s41467-018-06052-0
[23]  Deepak, K.G.K., Vempati, R., Nagaraju, G.P., et al. (2020) Tu-mor Microenvironment: Challenges and Opportunities in Targeting Metastasis of Triple Negative Breast Cancer. Phar-macological Research, 153, Article ID: 104683.
https://doi.org/10.1016/j.phrs.2020.104683
[24]  Schmid, P., Rugo, H.S., Adams, S., et al. (2020) Atezolizumab Plus Nab-Paclitaxel as First-Line Treatment for Unresectable, Locally Advanced or Metastatic Triple-Negative Breast Cancer (IMpassion130): Updated Efficacy Results From a Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. The Lancet Oncology, 21, 44-59.
https://doi.org/10.1016/S1470-2045(19)30689-8
[25]  Wu, Y., Kyle-Cezar, F., Woolf, R.T., et al. (2019) An In-nate-Like Vδ1+ γδ T Cell Compartment in the Human Breast Is Associated with Remission in Triple-Negative Breast Cancer. Science Translational Medicine, 11, Article No. eaax9364.
https://doi.org/10.1126/scitranslmed.aax9364
[26]  Zhang, S.-C., Hu, Z.-Q., Long, J.-H., et al. (2019) Clinical Im-plications of Tumor-Infiltrating Immune Cells in Breast Cancer. Journal of Cancer, 10, 6175-6184.
https://doi.org/10.7150/jca.35901
[27]  Vito, A., Salem, O., El-Sayes, N., et al. (2021) Immune Checkpoint Block-ade in Triple Negative Breast Cancer Influenced by B Cells through Myeloid-Derived Suppressor Cells. Communications Biology, 4, Article No. 859.
https://doi.org/10.1038/s42003-021-02375-9
[28]  Toney, N.J., Opdenaker, L.M., Cicek, K., et al. (2022) Tu-mor-B-Cell Interactions Promote Isotype Switching to an Immunosuppressive Igg4 Antibody Response Through Upreg-ulation of IL-10 in Triple Negative Breast Cancers. Journal of Translational Medicine, 20, Article No. 112.
https://doi.org/10.1186/s12967-022-03319-5
[29]  Huang, A.C. and Zappasodi, R. (2022) A Decade of Checkpoint Blockade Immunotherapy in Melanoma: Understanding the Molecular Basis for Immune Sensitivity and Resistance. Na-ture Immunology, 23, 660-670.
https://doi.org/10.1038/s41590-022-01141-1
[30]  Banach, K., Kowalska, J., Rzepka, Z., et al. (2021) The Role of UVA Radiation in Ketoprofen-Mediated BRAF-Mutant Amelanotic Melanoma Cells Death—A Study at the Cellular and Molecular Level. Toxicology in Vitro, 72, Article ID: 105108.
https://doi.org/10.1016/j.tiv.2021.105108
[31]  Moyers, J.T. and Glitza Oliva, I.C. (2021) Immunotherapy for Mel-anoma. In: Naing, A. and Hajjar, J., Eds., Immunotherapy. Advances in Experimental Medicine and Biology, Vol. 1342, Springer, Cham, 81-111.
https://doi.org/10.1007/978-3-030-79308-1_3
[32]  Mayr, J.A., Feichtinger, R.G., Tort, F., Ribes, A. and Sperl, W. (2014) Lipoic Acid Biosynthesis Defects. Journal of Inherited Metabolic Disease, 37, 553-563.
https://doi.org/10.1007/s10545-014-9705-8
[33]  Solmonson, A., Faubert, B., Gu, W., et al. (2022) Compart-mentalized Metabolism Supports Midgestation Mammalian Development. Nature, 604, 349-353.
https://doi.org/10.1038/s41586-022-04557-9
[34]  Lv, H., Liu, X., Zeng, X., et al. (2022) Comprehensive Analysis of Cuproptosis-Related Genes in Immune Infiltration and Prognosis in Melanoma. Frontiers in Pharmacology, 13, Arti-cle ID: 930041.
https://doi.org/10.3389/fphar.2022.930041
[35]  Sosman, J.A., Kim, K.B., Schuchter, L., et al. (2012) Survival in BRAF V600–Mutant Advanced Melanoma Treated with Vemurafenib. New England Journal of Medicine, 366, 707-714.
https://doi.org/10.1056/NEJMoa1112302
[36]  Tang, D., Kang, R., Berghe, T.V., Vandenabeele, P. and Kroemer, G. (2019) The Molecular Machinery of Regulated Cell Death. Cell Research, 29, 347-364.
https://doi.org/10.1038/s41422-019-0164-5
[37]  Brady, D.C., Crowe, M.S., Turski, M.L., et al. (2014) Copper Is Required for Oncogenic BRAF Signaling and Tumorigenesis. Nature, 509, 492-496.
https://doi.org/10.1038/nature13180
[38]  Ayers, M., Lunceford, J., Nebozhyn, M., et al. (2017) IFN-γ-Related mRNA Profile Predicts Clinical Response to PD-1 Blockade. Journal of Clinical Investigation, 127, 2930-2940.
https://doi.org/10.1172/JCI91190
[39]  Grasso, C.S., Tsoi, J., Onyshchenko, M., et al. (2020) Conserved Interfer-on-γ Signaling Drives Clinical Response to Immune Checkpoint Blockade Therapy in Melanoma. Cancer Cell, 38, 500-515.
https://doi.org/10.1016/j.ccell.2020.08.005
[40]  Kim, Y.J., Sheu, K.M., Tsoi, J., et al. (2021) Melanoma Dediffer-entiation Induced by IFN-γ Epigenetic Remodeling in Response to Anti-PD-1 Therapy. Journal of Clinical Investigation, 131, e145859.
https://doi.org/10.1172/JCI145859
[41]  Nguyen, T.-T., Ramsay, L., Ahanfeshar-Adams, M., et al. (2021) Mutations in the IFNγ-JAK-STAT Pathway Causing Resistance to Immune Checkpoint Inhibitors in Melanoma Increase Sensitivity to Oncolytic Virus Treatment. Clinical Cancer Research, 27, 3432-3442.
https://doi.org/10.1158/1078-0432.CCR-20-3365
[42]  Jonasch, E., Gao, J. and Rathmell, W.K. (2014) Renal Cell Carcinoma. BMJ, 349, Article No. g4797.
https://doi.org/10.1136/bmj.g4797
[43]  Lalani, A.-A., McGregor, B.A., Albiges, L., et al. (2019) Systemic Treat-ment of Metastatic Clear Cell Renal Cell Carcinoma in 2018: Current Paradigms, Use of Immunotherapy, and Future Di-rections. European Urology, 75, 100-110.
https://doi.org/10.1016/j.eururo.2018.10.010
[44]  Jonasch, E., Walker, C.L. and Rathmell, W.K. (2021) Clear Cell Renal Cell Carcinoma Ontogeny and Mechanisms of Lethality. Nature Reviews Nephrology, 17, 245-261.
https://doi.org/10.1038/s41581-020-00359-2
[45]  Linehan, W.M., Schmidt, L.S., Crooks, D.R., et al. (2019) The Metabolic Basis of Kidney Cancer. Cancer Discovery, 9, 1006-1021.
https://doi.org/10.1158/2159-8290.CD-18-1354
[46]  Cancer Genome Atlas Research Network (2013) Comprehen-sive Molecular Characterization of Clear Cell Renal Cell Carcinoma. Nature, 499, 43-49.
https://doi.org/10.1038/nature12222
[47]  Bian, Z., Fan, R. and Xie, L. (2022) A Novel Cuproptosis-Related Prog-nostic Gene Signature and Validation of Differential Expression in Clear Cell Renal Cell Carcinoma. Genes, 13, Article No. 851.
https://doi.org/10.3390/genes13050851
[48]  Singh, D., Narayanamoorthy, S., Gamre, S., et al. (2018) Hydroxy-chavicol, a Key Ingredient of Piper betle Induces Bacterial Cell Death by DNA Damage and Inhibition of Cell Division. Free Radical Biology and Medicine, 120, 62-71.
https://doi.org/10.1016/j.freeradbiomed.2018.03.021
[49]  Nanni, V., Di Marco, G., Sacchetti, G., Canini, A. and Gismondi, A. (2020) Oregano Phytocomplex Induces Programmed Cell Death in Melanoma Lines via Mitochondria and DNA Damage. Foods, 9, Article No. 1486.
https://doi.org/10.3390/foods9101486
[50]  Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2021) Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 71, 7-33.
https://doi.org/10.3322/caac.21654
[51]  Rustgi, A.K. and El-Serag, H.B. (2014) Esophageal Carcinoma. New England Journal of Medicine, 371, 2499-2509.
https://doi.org/10.1056/NEJMra1314530
[52]  Jiang, R., Huan, Y., Li, Y., et al. (2022) Transcriptional and Genetic Alterations of Cuproptosis-Related Genes Correlated to Malignancy and Immune-Infiltrate of Esophageal Carcinoma. Cell Death Discovery, 8, Article No. 370.
https://doi.org/10.1038/s41420-022-01164-5
[53]  Lavilla, I., Costas, M., Miguel, P.S., Millos, J. and Bendicho, C. (2009) Elemental Fingerprinting of Tumorous and Adjacent Non-Tumorous Tissues From Patients with Colorectal Can-cer Using ICP-MS, ICP-OES and Chemometric Analysis. BioMetals, 22, 863-875.
https://doi.org/10.1007/s10534-009-9231-6
[54]  Majumder, S., Chatterjee, S., Pal, S., et al. (2009) The Role of Copper in Drug-Resistant Murine and Human Tumors. BioMetals, 22, 377-384.
https://doi.org/10.1007/s10534-008-9174-3
[55]  Xu, W.K., Byun, H. and Dudley, J.P. (2020) The Role of APO-BECs in Viral Replication. Microorganisms, 8, Article No. 1899.
https://doi.org/10.3390/microorganisms8121899
[56]  Elango, R., Osia, B., Harcy, V., et al. (2019) Repair of Base Damage within Break-Induced Replication Intermediates Promotes Kataegis Associated with Chromosome Rearrange-ments. Nucleic Acids Research, 47, 9666-9684.
https://doi.org/10.1093/nar/gkz651
[57]  Shi, M.-J., Meng, X.-Y., Fontugne, J., et al. (2020) Identification of New Driver and Passenger Mutations within APOBEC-Induced Hotspot Mutations in Bladder Cancer. Genome Medicine, 12, Article No. 85.
https://doi.org/10.1186/s13073-020-00781-y
[58]  Zhou, B., Guo, L., Zhang, B., et al. (2019) Disulfiram Combined with Copper Induces Immunosuppression via PD-L1 Stabilization in Hepatocellular Carcinoma. American Journal of Cancer Research, 9, 2442-2455.
[59]  Simoni, Y., Becht, E., Fehlings, M., et al. (2018) Bystander CD8+ T Cells Are Abundant and Phenotypically Distinct in Human Tumor Infiltrates. Nature, 557, 575-579.
https://doi.org/10.1038/s41586-018-0130-2
[60]  Meier, S.L., Satpathy, A.T. and Wells, D.K. (2022) Bystander T Cells in Cancer Immunology and Therapy. Nature Cancer, 3, 143-155.
https://doi.org/10.1038/s43018-022-00335-8
[61]  Yamaguchi, H., Hsu, J.-M., Yang, W.-H. and Hung, M.-C. (2022) Mechanisms Regulating PD-L1 Expression in Cancers and Associated Opportunities for Novel Small-Molecule Therapeutics. Nature Reviews Clinical Oncology, 19, 287-305.
https://doi.org/10.1038/s41571-022-00601-9
[62]  Haraldsdottir, S., Einarsdottir, H.M., Smaradottir, A., et al. (2022) Colorectal Cancer—A Review. Laeknabladid, 100, 75-82.
[63]  Torre, L.A., Bray, F., Siegel, R.L., et al. (2015) Global Cancer Statistics, 2012. CA: A Cancer Journal for Clinicians, 65, 87-108.
https://doi.org/10.3322/caac.21262
[64]  Baidoun, F., Elshiwy, K., Elkeraie, Y., et al. (2021) Colorectal Cancer Ep-idemiology: Recent Trends and Impact on Outcomes. Current Drug Targets, 22, 998-1009.
https://doi.org/10.2174/18735592MTEx9NTk2y
[65]  Sheftel, A.D., Stehling, O., Pierik, A.J., et al. (2010) Hu-mans Possess Two Mitochondrial Ferredoxins, Fdx1 and Fdx2, with Distinct Roles in Steroidogenesis, Heme, and Fe/S Cluster Biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 107, 11775-11780.
https://doi.org/10.1073/pnas.1004250107
[66]  Strushkevich, N., MacKenzie, F., Cherkesova, T., et al. (2011) Structural Basis for Pregnenolone Biosynthesis by the Mitochondrial Monooxygenase System. Proceedings of the National Academy of Sciences of the United States of America, 108, 10139-10143.
https://doi.org/10.1073/pnas.1019441108
[67]  Wang, Z., Dong, H., Yang, L., et al. (2021) The Role of FDX1 in Granulosa Cell of Polycystic Ovary Syndrome (PCOS). BMC Endocrine Disorders, 21, Article No. 119.
https://doi.org/10.1186/s12902-021-00775-w
[68]  Wang, L., Cao, Y., Guo, W. and Xu, J. (2023) High Expression of Cuproptosis-Related Gene FDX1 in Relation to Good Prognosis and Immune Cells Infiltration in Colon Adenocarci-noma (COAD). Journal of Cancer Research and Clinical Oncology, 149, 15-24.
https://doi.org/10.1007/s00432-022-04382-7
[69]  O’Shaughnessy, M.J., Murray, K.S., La Rosa, S.P., et al. (2018) Systemic Antitumor Immunity by PD-1/PD-L1 Inhibition Is Potentiated by Vascular-Targeted Photodynamic Therapy of Primary Tumors. Clinical Cancer Research, 24, 592-599.
https://doi.org/10.1158/1078-0432.CCR-17-0186
[70]  Buas, M.F., He, Q., Johnson, L.G., et al. (2017) Germline Variation in Inflammation-Related Pathways and Risk of Barrett’s Oesophagus and Oesophageal Adenocarcinoma. Gut, 66, 1739-1747.
https://doi.org/10.1136/gutjnl-2016-311622
[71]  Ha, J.H., Jayaraman, M., Yan, M., et al. (2021) GNAi2/gip2-Regulated Transcriptome and Its Therapeutic Significance in Ovarian Cancer. Biomolecules, 11, Article No. 1211.
https://doi.org/10.3390/biom11081211
[72]  Ma, X., Zhang, Q., Du, J., Tang, J. and Tan, B. (2021) Integrat-ed Analysis of ceRNA Regulatory Network Associated with Tumor Stage in Cervical Cancer. Frontiers in Genetics, 12, Article 618753.
https://doi.org/10.3389/fgene.2021.618753
[73]  Rimal, R., Desai, P., Marquez, A.B., et al. (2021) 3-D Vascular-ized Breast Cancer Model to Study the Role of Osteoblast in Formation of a Pre-Metastatic Niche. Scientific Reports, 11, Article No. 21966.
https://doi.org/10.1038/s41598-021-01513-x
[74]  Ding, H., Zhang, X., Su, Y., Jia, C. and Dai, C. (2020) GNAS Promotes Inflammation-Related Hepatocellular Carcinoma Progression by Promoting STAT3 Activation. Cellular & Molecular Biology Letters, 25, Article No. 8.
https://doi.org/10.1186/s11658-020-00204-1
[75]  Duperret, E.K., Trautz, A., Ammons, D., et al. (2018) Alteration of the Tumor Stroma Using a Consensus DNA Vaccine Targeting Fibroblast Activation Protein (FAP) Synergizes with Antitumor Vaccine Therapy in Mice. Clinical Cancer Research, 24, 1190-1201.
https://doi.org/10.1158/1078-0432.CCR-17-2033
[76]  Elyada, E., Bolisetty, M., Laise, P., et al. (2019) Cross-Species Single-Cell Analysis of Pancreatic Ductal Adenocarcinoma Reveals Antigen-Presenting Can-cer-Associated Fibroblasts. Cancer Discovery, 9, 1102-1123.
https://doi.org/10.1158/2159-8290.CD-19-0094
[77]  Olusola, P., Banerjee, H.N., Philley, J.V. and Dasgupta, S. (2019) Human Papilloma Virus-Associated Cervical Cancer and Health Disparities. Cells, 8, Article No. 622.
https://doi.org/10.3390/cells8060622
[78]  Lei, J., Ploner, A., Elfstr?m, K.M., et al. (2020) HPV Vaccination and the Risk of Invasive Cervical Cancer. New England Journal of Medicine, 383, 1340-1348.
https://doi.org/10.1056/NEJMoa1917338
[79]  Lei, L., Tan, L. and Sui, L. (2022) A Novel Cuproptosis-Related Gene Signature for Predicting Prognosis in Cervical Cancer. Frontiers in Genetics, 13, Article 957744.
https://doi.org/10.3389/fgene.2022.957744
[80]  Wang, L., Kaneko, S., Kagaya, M., et al. (2002) Molecular Clon-ing, and Characterization and Expression of Dihydrolipoamide Acetyltransferase Component of Murine Pyruvate Dehy-drogenase Complex in Bile Duct Cancer Cells. Journal of Gastroenterology, 37, 449-454.
https://doi.org/10.1007/s005350200065
[81]  Li, Y., Huang, R., Li, X., et al. (2016) Decreased Expression of Py-ruvate Dehydrogenase A1 Predicts an Unfavorable Prognosis in Ovarian Carcinoma. American Journal of Cancer Re-search, 6, 2076-2087.
[82]  Song, L., Liu, D., Zhang, X., et al. (2019) Low Expression of PDHA1 Predicts Poor Prog-nosis in Gastric Cancer. Pathology-Research and Practice, 215, 478-482.
https://doi.org/10.1016/j.prp.2018.12.038
[83]  Chen, J., Guccini, I., Di Mitri, D., et al. (2018) Compartmentalized Activities of the Pyruvate Dehydrogenase Complex Sustain Lipogenesis in Prostate Cancer. Nature Genetics, 50, 219-228.
https://doi.org/10.1038/s41588-017-0026-3
[84]  Li, D., Wang, C., Ma, P., et al. (2018) PGC1α Promotes Cholangiocarcinoma Metastasis by Upregulating PDHA1 and MPC1 Expression to Reverse the Warburg Effect. Cell Death & Disease, 9, Article No. 466.
https://doi.org/10.1038/s41419-018-0494-0
[85]  Ishida, S., McCormick, F., Smith-McCune, K. and Hanahan, D. (2010) Enhancing Tumor-Specific Uptake of the Anticancer Drug Cisplatin with a Copper Chelator. Cancer Cell, 17, 574-583.
https://doi.org/10.1016/j.ccr.2010.04.011
[86]  Gao, W., Huang, Z., Duan, J., et al. (2021) Elesclomol In-duces Copper-Dependent Ferroptosis in Colorectal Cancer Cells via Degradation of ATP7A. Molecular Oncology, 15, 3527-3544.
https://doi.org/10.1002/1878-0261.13079
[87]  Henning, A.N., Roychoudhuri, R. and Restifo, N.P. (2018) Epigenetic Control of CD8+ T Cell Differentiation. Nature Reviews Immunology, 18, 340-356.
https://doi.org/10.1038/nri.2017.146
[88]  Hodgins, J.J., Khan, S.T., Park, M.M., Auer, R.C. and Ardolino, M. (2019) Killers 2.0: NK Cell Therapies at the Forefront of Cancer Control. Journal of Clinical Investigation, 129, 3499-3510.
https://doi.org/10.1172/JCI129338
[89]  Liang, Y., Hannan, R. and Fu, Y.-X. (2021) Type I IFN Acti-vating Type I Dendritic Cells for Antitumor Immunity. Clinical Cancer Research, 27, 3818-3824.
https://doi.org/10.1158/1078-0432.CCR-20-2564
[90]  Kahlson, M.A. and Dixon, S.J. (2022) Copper-Induced Cell Death. Science, 375, 1231-1232.
https://doi.org/10.1126/science.abo3959

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133