|
高响应NaTaO3/SnO2湿度传感器的制备及性能研究
|
Abstract:
本文采用水热法制备NaTaO3/SnO2纳米材料,系统地研究了其湿度传感性能。实验结果表明,NaTaO3/SnO2复合材料比表面积比纯NaTaO3更大,这使得复合材料表面吸附更多的水分子,增强了NaTaO3/SnO2湿度传感器的性能。NaTaO3/SnO2复合材料表面氧空位含量明显提升,使其吸附大量水分,促进水分子分解为导电离子,提高NaTaO3/SnO2湿度传感器的响应和恢复速度。该NaTaO3/SnO2湿度传感器电阻达到3个数量级,在11%~95%相对湿度范围内具有高响应度(303,959%)、良好的线性度、低的湿滞(1.99%)、长期稳定性和快的响应和恢复时间(分别为15 s和13 s)。通过对NaTaO3/SnO2湿度传感器的复阻抗谱分析,对其传感机理进行了解释。NaTaO3/SnO2复合材料的成功制备也为具有高湿敏性能的NaTaO3基电阻传感器的设计开辟了新的方向。
NaTaO3/SnO2 nanomaterials were prepared by hydrothermal method, and their humidity sensing properties were studied systematically in this paper. The experimental results show that the specific surface area of NaTaO3/SnO2 composite is larger than that of pure NaTaO3, which makes the surface of the composite absorb more water molecules and enhances the response of NaTaO3/SnO2 humidity sensor. The oxygen vacancies on the surface of NaTaO3/SnO2 composite material are significantly increased, which makes it absorb a large amount of water, promote the decomposition of water molecules into conductive ions, and improve the response and recovery speed of NaTaO3/SnO2 humidity sensor. The NaTaO3/SnO2 humidity sensor has a resistance of 3 orders of magnitude, high responsiveness (303,959%), good linearity, low hysteresis (1.99%), long-term stability and fast response and recovery time (15 s and 13 s, respectively) in the range of 11%~95% relative humidity. By analyzing the complex impedance spectrum of NaTaO3/SnO2 humidity sensor, the sensing mechanism was explained. The successful prepara-tion of NaTaO3/SnO2 composites also provides a new direction for the design of high humidity-sensitive NaTaO3-based resistance sensors.
[1] | Zhang, Y., Chen, Y., Zhang, Y., Cheng, X., Feng, C., Chen, L., Zhou, J. and Ruan, S. (2012) A Novel Humidity Sensor Based on NaTaO3 Nanocrystalline. Sensors and Actuators B: Chemical, 174, 485-489.
https://doi.org/10.1016/j.snb.2012.08.050 |
[2] | Jiang, H., Dai, H., Xia, Y. and He, H. (2010) Synthesis and Characterization of Wormhole-Like Mesoporous SnO2 with High Surface Area. Chinese Journal of Catalysis, 31, 295-301. https://doi.org/10.1016/S1872-2067(09)60052-8 |
[3] | Li, F., Li, P. and Zhang, H. (2021) Preparation and Research of a High-Performance ZnO/SnO2 Humidity Sensor. Sensors, 22, Article 293. https://doi.org/10.3390/s22010293 |
[4] | Wang, X., Ma, J., Kong, Y., Fan, C., Peng, M. and Komarneni, S. (2019) Synthesis of p-n Heterojunction Ag3PO4/NaTaO3 Composite Photocatalyst for Enhanced Visi-ble-Light-Driven Photocatalytic Performance. Materials Letters, 251, 192-195. https://doi.org/10.1016/j.matlet.2019.05.078 |
[5] | Babu, B., Reddy, I.N., Yoo, K., Kim, D. and Shim, J. (2018) Bandgap Tuning and XPS Study of SnO2 Quantum Dots. Materials Letters, 221, 211-215. https://doi.org/10.1016/j.matlet.2018.03.107 |
[6] | Bhangare, B., Ramgir, N.S., Jagtap, S., Debnath, A.K., Muthe, K.P., Terashima, C., Aswal, D.K., Gosavi, S.W. and Fujishima, A. (2019) XPS and Kelvin Probe Studies of SnO2/RGO Nanohybrids Based NO2 Sensors. Applied Surface Science, 487, 918-929. https://doi.org/10.1016/j.apsusc.2019.05.176 |
[7] | Tang, L., Feng, C., Deng, Y., Zeng, G., Wang, J., Liu, Y., Feng, H. and Wang, J. (2018) Enhanced Photocatalytic Activity of Ternary Ag/g-C3N4/NaTaO3 Photocatalysts under Wide Spectrum Light Radiation: The High Potential Band Protection Mechanism. Applied Catalysis B: Environmental, 230, 102-114.
https://doi.org/10.1016/j.apcatb.2018.02.031 |
[8] | Yang, F., Yan, L., Zhang, B., He, X., Li, Y., Tang, Y., Ma, C. and Li, Y. (2019) Fabrication of Ternary NaTaO3/g-C3N4/G Heterojunction Photocatalyst with Enhanced Activity for Rhodamine B Degradation. Journal of Alloys and Compounds, 805, 802-810. https://doi.org/10.1016/j.jallcom.2019.07.052 |
[9] | Xu, L., Li, C., Shi, W., Guan, J. and Sun, Z. (2012) Visible Light-Response NaTa1?xCuxO3 Photocatalysts for Hydrogen Production from Methanol Aqueous Solution. Journal of Molecular Catalysis A: Chemical, 360, 42-47.
https://doi.org/10.1016/j.molcata.2012.04.006 |
[10] | Fang, W., Xing, M. and Zhang, J. (2014) A New Approach to Prepare Ti3+ Self-Doped TiO2 via NaBH4 Reduction and Hydrochloric Acid Treatment. Applied Catalysis B: Environmental, 160-161, 240-246.
https://doi.org/10.1016/j.apcatb.2014.05.031 |
[11] | Li, Z., Luo, X., Wu, W. and Wu, J. (2017) Niobium and Divalent-Modified Titanium Dioxide Ceramics: Colossal Permittivity and Composition Design. Journal of the American Ceramic Society, 100, 3004-3012.
https://doi.org/10.1111/jace.14850 |
[12] | Tse, M.Y., Wei, X. and Hao, J. (2016) High-Performance Colossal Permittivity Materials of (Nb+Er) Co-Doped TiO2 for Large Capacitors and High-Energy-Density Storage Devices. Physical Chemistry Chemical Physics, 18, 24270-24277.
https://doi.org/10.1039/C6CP02236G |
[13] | Si, R., Xie, X., Li, T., Zheng, J., Cheng, C. and Wang, C. (2020) TiO2/NaNbO3 Heterojunction for Boosted Humidity Sensing Ability. Sensors and Actuators B: Chemical, 309, Ar-ticle ID: 127803.
https://doi.org/10.1016/j.snb.2020.127803 |
[14] | Yu, S., Chen, C., Zhang, H., Zhang, J. and Liu, J. (2021) De-sign of High Sensitivity Graphite Carbon Nitride/Zinc Oxide Humidity Sensor for Breath Detection. Sensors and Actuators B: Chemical, 332, Article ID: 129536.
https://doi.org/10.1016/j.snb.2021.129536 |
[15] | Shanker, V., Samal, S.L., Pradhan, G.K., Narayana, C. and Ganguli, A.K. (2009) Nanocrystalline NaNbO3 and NaTaO3: Rietveld Studies, Raman Spectroscopy and Dielectric Properties. Solid State Sciences, 11, 562-569.
https://doi.org/10.1016/j.solidstatesciences.2008.08.001 |
[16] | Wang, K., Zhang, G., Li, J., Li, Y. and Wu, X. (2017) 0D/2D Z-Scheme Heterojunctions of Bismuth Tantalate Quantum Dots/Ultrathin g-C3N4 Nanosheets for Highly Efficient Visible Light Photocatalytic Degradation of Antibiotics. ACS Applied Materials & Interfaces, 9, 43704-43715. https://doi.org/10.1021/acsami.7b14275 |
[17] | Elamin, N.Y., Indumathi, T. and Kumar, R.E. (2023) Evaluation of Physicochemical and Biological Properties of SnO2 and Fe Doped SnO2 Nanoparticles. Ce-ramics International, 49, 2388-2393.
https://doi.org/10.1016/j.ceramint.2022.09.211 |
[18] | Yadav, V., Singh, N. and Meena, D. (2022) Investigation of Structural and Optical Properties of Pure SnO2, ZnO and SnO2/ZnO Composite Nanorods. Materials Today: Proceedings, 62, 3368-3375.
https://doi.org/10.1016/j.matpr.2022.04.255 |
[19] | Zhang, B., Tian, Y., Zhang, J.X. and Cai, W. (2011) The FTIR Studies of SnO2: Sb(ATO) Films Deposited by Spray Pyrolysis. Materials Letters, 65, 1204-1206. https://doi.org/10.1016/j.matlet.2011.01.052 |
[20] | Zhang, D., Sun, Y.E., Li, P. and Zhang, Y. (2016) Facile Fabrication of MoS2-Modified SnO2 Hybrid Nanocomposite for Ultrasensitive Humidity Sensing. ACS Applied Materials & Interfaces, 8, 14142-14149.
https://doi.org/10.1021/acsami.6b02206 |
[21] | Duan, Z., Jiang, Y., Yan, M., Wang, S., Yuan, Z., Zhao, Q., Sun, P., Xie, G., Du, X. and Tai, H. (2019) Facile, Flexible, Cost-Saving, and Environment-Friendly Paper-Based Hu-midity Sensor for Multifunctional Applications. ACS Applied Materials & Interfaces, 11, 21840-21849. https://doi.org/10.1021/acsami.9b05709 |
[22] | Mogera, U., Sagade, A.A., George, S.J. and Kulkarni, G.U. (2014) Ultrafast Response Humidity Sensor Using Supramolecular Nanofibre and Its Application in Monitoring Breath Humidity and Flow. Scientific Reports, 4, Article No. 4103. https://doi.org/10.1038/srep04103 |
[23] | Tomer, V.K., Duhan, S., Sharma, A.K., Malik, R., Nehra, S.P. and Devi, S. (2015) One Pot Synthesis of Mesoporous ZnO-SiO2 Nanocomposite as High Performance Humidity Sensor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 483, 121-128. https://doi.org/10.1016/j.colsurfa.2015.07.046 |
[24] | Li, X., Zhuang, Z., Qi, D. and Zhao, C. (2021) High Sensitive and Fast Response Humidity Sensor Based on Polymer Composite Nanofibers for Breath Monitoring and Non-Contact Sensing. Sensors and Actuators B: Chemical, 330, Article ID: 129239. https://doi.org/10.1016/j.snb.2020.129239 |
[25] | Zhao, Y., Yang, B. and Liu, J. (2018) Effect of Interdigital Electrode Gap on the Performance of SnO2-Modified MoS2 Capacitive Humidity Sensor. Sensors and Actuators B: Chemical, 271, 256-263.
https://doi.org/10.1016/j.snb.2018.05.084 |
[26] | 张莹. 基于多孔材料和钽酸钠的湿敏传感器的研究[D]: [博士学位论文]. 长春: 吉林大学, 2014. |
[27] | Jiang, K., Zhao, H., Dai, J., Kuang, D., Fei, T. and Zhang, T. (2016) Ex-cellent Humidity Sensor Based on LiCl Loaded Hierarchically Porous Polymeric Microspheres. ACS Applied Mate-rials & Interfaces, 8, 25529-25534.
https://doi.org/10.1021/acsami.6b08071 |
[28] | Zhang, D., Zong, X., Wu, Z. and Zhang, Y. (2018) Hierarchical Self-Assembled SnS2 Nanoflower/Zn2SnO4 Hollow Sphere Nanohybrid for Humidity-Sensing Applications. ACS Applied Materials & Interfaces, 10, 32631-32639.
https://doi.org/10.1021/acsami.8b08493 |
[29] | Yang, C., Zhang, H., Gu, W. and Chen, C. (2022) Preparation and Mechanism Investigation of Highly Sensitive Humidity Sensor Based on Ag/TiO2. Current Applied Physics, 43, 57-65. https://doi.org/10.1016/j.cap.2022.08.006 |
[30] | Jiang, K., Zhao, H., Fei, T., Dou, H. and Zhang, T. (2016) A Guest/Host Composite of Fe(NO3)3/Nanoporous Polytriphenylamine Assembly for Humidity Sensor. Sensors and Actuators B: Chemical, 222, 440-446.
https://doi.org/10.1016/j.snb.2015.08.004 |
[31] | Song, X., Qi, Q., Zhang, T. and Wang, C. (2009) A Humidity Sensor Based on KCl-Doped SnO2 Nanofibers. Sensors and Actuators B: Chemical, 138, 368-373. https://doi.org/10.1016/j.snb.2009.02.027 |
[32] | Shinde, K.P., Pawar, S.S. and Pawar, S.H. (2011) Influence of Annealing Temperature on Morphological and Magnetic Properties of La0.9Sr0.1MnO3. Applied Surface Science, 257, 9996-9999. https://doi.org/10.1016/j.apsusc.2011.06.126 |
[33] | Zhang, Y., Zheng, X., Zhang, T., Gong, L., Dai, S. and Chen, Y. (2010) Humidity Sensing Properties of the Sensor Based on Bi0.5K0.5TiO3 Powder. Sensors and Actuators B: Chemical, 147, 180-184. https://doi.org/10.1016/j.snb.2010.03.045 |