|
前交叉韧带重建术后腱骨愈合的生物学干预
|
Abstract:
前交叉韧带断裂的主要原因是运动损伤,约占70%以上。前交叉韧带损伤能够继发关节软骨退变及半月板损伤,甚至导致关节功能丧失。在关节镜下行自体腘绳肌肌腱重建前交叉韧带是目前公认最有效的治疗方式,但失败率约为0.7%~10%,其手术失败的重要原因是移植肌腱与骨隧道愈合不良导致的。前交叉韧带重建术后腱骨界面的愈合是影响手术效果和患者转归的重要因素。因此,目前迫切需要寻找有效促进腱骨愈合作用靶点和干预方法作为补充治疗措施。本文从生物学干预角度对腱骨愈合的相关研究进行综述,总结目前医学前沿的基因工程技术加速腱骨愈合的关键问题,并展望未来的应用前景,降低重建后韧带的再损伤率,快速帮助患者恢复运动功能,改善生活质量,提高生活水平。
The primary cause of anterior cruciate ligament rupture is sports-related injuries, accounting for over 70% of cases. Anterior cruciate ligament injury can lead to secondary joint cartilage degenera-tion and meniscus injury, and even result in loss of joint function. Autogenous hamstring tendon reconstruction of the anterior cruciate ligament is currently recognized as the most effective treat-ment method, but failure rates range from 0.7% to 10%. The main reason for surgical failure is poor healing between the transplanted tendon and bone tunnel. The healing of the tendon-bone inter-face after anterior cruciate ligament reconstruction surgery is an important factor affecting surgical outcomes and patient recovery. Therefore, there is an urgent need to identify effective targets and intervention methods to promote tendon-bone healing as a supplementary treatment measure. This article provides a comprehensive review of relevant research on tendon-bone healing from a biological intervention perspective, summarizes key issues in gene engineering technology at the forefront of medicine to accelerate tendon-bone healing, and looks ahead to future applications that can reduce the rate of re-injury after reconstruction, restore patients’ physical function, improve the quality of life and the standard of living.
[1] | 汤义民, 陶钧, 董斌, 等. 关节镜下前交叉韧带重建术的手术时机对患者膝关节功能恢复的影响[J]. 现代生物医学进展, 2019, 19(4): 755-758, 788. |
[2] | Sochacki, K.R., McCulloch, P.C., Lintner, D.M. and Harris, J.D. (2019) Hamstring Autograft versus Hybrid Graft in Anterior Cruciate Ligament Reconstruction: A Systematic Review of Com-parative Studies. Arthroscopy, 35, 1905-1913.
https://doi.org/10.1016/j.arthro.2018.11.070 |
[3] | Gogh, A.M., Li, X., Youn, G.M., et al. (2019) Arthroscopic Harvesting of Autologous Bone Graft for Use as a Mesenchymal Stem Cell Carrier in Anterior Cruciate Ligament Re-construction. Arthroscopy Techniques, 9, E45-E50.
https://doi.org/10.1016/j.eats.2019.08.018 |
[4] | Paterno, M.V., Rauh, M.J., Schmitt, L.C., Ford, K.R. and Hewett, T.E. (2014) Incidence of Second ACL Injuries 2 Years after Primary ACL Reconstruction and Return to Sport. The American Journal of Sports Medicine, 42, 1567-1573.
https://doi.org/10.1177/0363546514530088 |
[5] | Matsumoto, T., Takayama, K., Hayashi, S., et al. (2019) Thera-peutic Potential of Vascular Stem Cells for Anterior Cruciate Ligament Reconstruction. Annals of Translational Medicine, 7, S286.
https://doi.org/10.21037/atm.2019.11.79 |
[6] | Bi, F.G., Shi, Z.L., Jiang, S., Guo, P. and Yan, S.G. (2014) Intermit-tently Administered Parathyroid Hormone [1-34] Promotes Tendon-Bone Healing in a Rat Model. International Journal of Molecular Sciences, 15, 17366-17379.
https://doi.org/10.3390/ijms151017366 |
[7] | Ciuffreda, M.C., Malpasso, G., Musarò, P., et al. (2016) Protocols for in vitro Differentiation of Human Mesenchymal Stem Cells into Osteogenic, Chondrogenic and Adipogenic Lineages. In: Gnecchi, M., Ed., Mesenchymal Stem Cells, Humana Press, New York, 149-158. https://doi.org/10.1007/978-1-4939-3584-0_8 |
[8] | ?amernik, K. and Zupan, J. (2019) Complete Assessment of Multilineage Differentiation Potential of Human Skeletal Muscle-Derived Mesenchymal Stem/Stromal Cells. In: Turksen, K., Ed., Stem Cells and Aging, Humana Press, New York, 131-144. https://doi.org/10.1007/7651_2018_200 |
[9] | Lim, J.K., Hui, J., Li, L., et al. (2004) Enhancement of Tendon Graft Osteointegration Using Mesenchymal Stem Cells in a Rabbit Model of Anterior Cruciate Ligament Reconstruction. Ar-throscopy, 20, 899-910.
https://doi.org/10.1016/S0749-8063(04)00653-X |
[10] | Ouyang, H.W., Goh, J.C. and Lee, E.H. (2004) Use of Bone Marrow Stromal Cells for Tendon Graft-to-Bone Healing: Histological and Immunohistochemical Studies in a Rabbit Model. The American Journal of Sports Medicine, 32, 321-327. https://doi.org/10.1177/0095399703258682 |
[11] | Karaoglu, S., Celik, C. and Korkusuz, P. (2009) The Effects of Bone Marrow or Periosteum on Tendon-to-Bone Tunnel Healing in a Rabbit Model. Knee Surgery, Sports Traumatology, Arthroscopy, 17, 170-178.
https://doi.org/10.1007/s00167-008-0646-3 |
[12] | Edwards, S.L., Lynch, T.S., Saltzman, M.D., Terry, M.A. and Nuber, G.W. (2011) Biologic and Pharmacologic Augmentation of Rotator Cuff Repairs. American Academy of Ortho-paedic Surgeon, 19, 583-589.
https://doi.org/10.5435/00124635-201110000-00002 |
[13] | Moon, S.W., Park, S., Oh, M. and Wang, J.H. (2021) Outcomes of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells in Enhancing Tendon-Graft Healing in Anterior Cruciate Ligament Reconstruction: an Exploratory Study. Knee Surgery & Related Research, 33, Article No. 32. https://doi.org/10.1186/s43019-021-00104-4 |
[14] | Jang, K.M., Lim, H.C., Jung, W.Y., Moon, S.W. and Wang, J.H. (2015) Efficacy and Safety of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells in Anterior Cruciate Ligament Reconstruction of a Rabbit Model: New Strategy to Enhance Tendon Graft Healing. Arthroscopy, 31, 1530-1539. https://doi.org/10.1016/j.arthro.2015.02.023 |
[15] | Guilak, F., Estes, B.T., Diekman, B.O., Moutos, F.T. and Gimble, J.M. (2010) 2010 Nicolas Andry Award: Multipotent Adult Stem Cells from Adipose Tissue for Musculo-skeletal Tissue Engineering. Clinical Orthopaedics and Related Research, 468, 2530-2540. https://doi.org/10.1007/s11999-010-1410-9 |
[16] | Oh, J.H., Chung, S.W., Kim, S.H., Chung, J.Y. and Kim, J.Y. (2014) 2013 Neer Award: Effect of the Adipose-Derived Stem Cell for the Improvement of Fatty Degeneration and Ro-tator Cuff Healing in Rabbit Model. Journal of Shoulder and Elbow Surgery, 23, 445-455. https://doi.org/10.1016/j.jse.2013.07.054 |
[17] | Mora, M.V., Antu?a, S.A., Arranz, M.G., Carrascal, M.T. and Bar-co, R. (2014) Application of Adipose Tissue-Derived Stem Cells in a Rat Rotator Cuff Repair Model. Injury, 45, S22-S27. https://doi.org/10.1016/S0020-1383(14)70006-3 |
[18] | Gimble, J.M., Katz, A.J. and Bunnell, B.A. (2007) Adipose-Derived Stem Cells for Regenerative Medicine. Circulation Research, 100, 1249-1260. https://doi.org/10.1161/01.RES.0000265074.83288.09 |
[19] | Gulotta, L.V., Kovacevic, D., Montgomery, S., Ehteshami, J.R., Packer, J.D. and Rodeo, S.A. (2010) Stem Cells Genetically Modified with the Developmental Gene MT1-MMP Improve Regeneration of the Supraspinatus Tendon-to-Bone Insertion Site. The American Journal of Sports Medicine, 38, 1429-1437.
https://doi.org/10.1177/0363546510361235 |
[20] | Wang, R., Xu, B. and Xu, H.G. (2017) Up-Regulation of TGF-β Promotes Tendon-to-Bone Healing after Anterior Cruciate Ligament Reconstruction using Bone Marrow-Derived Mes-enchymal Stem Cells through the TGF-β/MAPK Signaling Pathway in a New Zealand White Rabbit Model. Cellular Physiology and Biochemistry, 41, 213-226.
https://doi.org/10.1159/000456046 |
[21] | Wang, L.L., Yin, X.F., Chu, X.C., Zhang, Y.B. and Gong, X.N. (2018) Platelet-Derived Growth Factor Subunit B Is Required for Tendon-Bone Healing Using Bone Marrow-Derived Mesen-chymal Stem Cells after Rotator Cuff Repair in Rats. Journal of Cellular Biochemistry, 119, 8897-8908. https://doi.org/10.1002/jcb.27143 |
[22] | Bonniaud, P., Martin, G., Margetts, P.J., et al. (2004) Connective Tissue Growth Factor Is Crucial to Inducing a Profibrotic Environment in “fibrosis-resistant” BALB/c Mouse Lungs. American Journal of Respiratory Cell and Molecular Biology, 31, 510-516. https://doi.org/10.1165/rcmb.2004-0158OC |
[23] | 王寒涛, 李梦宇, 喻树迅, 等. GhAIF3基因在调控植物表型中的应用及调控植物表型的方法[P]. 中国专利, 113846105A. 2021-12-28 |