In this
article, a model of a rotor with an asymmetric disk is presented in order to
represent Campbell’s diagrams and instability maps as a function of the
rotations of the support which can significantly change the dynamic behavior of
the rotor. Critical rotating speeds can also lead to unacceptable levels of
vibration. Indeed, the critical speeds are a function of the dynamic rigidity
of the rotating systems and the presence of the gyroscopic forces creates a
dependence between the rotating speed of rotation and the natural frequencies
to such structures (the CAMPBELL diagrams): this implies that the correct
determination of the critical speeds is one of the essential elements when
sizing such dynamic systems.
References
[1]
Lalanne, M. and Ferraris, G. (1998) Rotordynamics Prediction in Engineering. Wiley, Chichester.
[2]
Genta, G. (2005) Dynamics of Rotating Systems. Springer, New York. https://doi.org/10.1007/0-387-28687-X
[3]
Dufour, R. and Berlioz, A. (1998) Parametric Instability of a Beam Due to Axial Excitations and to Boundary Conditions. ASME Journal of Vibration and Acoustics, 120, 461-467. https://doi.org/10.1115/1.2893852
[4]
Guilhen, P.M., Berthier, P., Ferraris, G. and Lalanne, M. (1988) Instability and Unbalance Response of Dissymmetric Rotor-Bearing Systems. ASME Journal of Vibration, Acoustics, Stress and Reliability in Design, 110, 288-294. https://doi.org/10.1115/1.3269515
[5]
Kang, Y., Shih, Y.-P. and Lee, A.-C. (1992) Investigation on the Steady-State Responses of Asymmetric Rotors. ASME Journal of Vibration and Acoustics, 114, 194-208. https://doi.org/10.1115/1.2930249
[6]
Beley-Sayettat, A. (1994) Effet des Dissymétries et Effet Sismique en Dynamique des Rotors. Thèse LMSt. INSA de Lyon, Lyon.
[7]
Oncescu, F., Lakis, A.A. and Ostiguy, G. (2001) Investigation of the Stability and Steady State Response of Asymmetric Rotors, Using Finite Element Formulation. Journal of Sound and Vibration, 245, 303-328. https://doi.org/10.1006/jsvi.2001.3570
[8]
Bachelet, L., Driot, N. and Ferraris, G. (2006) Comportement dynamique des rotors embarqués sous sollicitations aléatoires. XV Colloque Vibrations, Chocs et Bruits, Lyon, 14-16 June 2006.
[9]
Duchemin, M. (2003) Contribution à l’étude du comportement dynamique d’un rotor embarqué. Ecole doctorale des sciences pour l’ingenieur de lyon, Lyon.
[10]
Zaki Dakel, M. (2014) Stabilité et dynamique non linéaire de rotor embarqués. INSA de Lyon.
[11]
Boukhalfa, A. (2009) Comportement vibratoire des arbres tournants en matériaux composites. Universite Abou Bekr Belkaid, Tlemcen.
[12]
Guillaume, M. (2011) Identification et prévision du comportement dynamique des rotors feuilletés en flexion. INSA de Lyon.
[13]
Medour, M. (2019) Dynamique de machines tournantes: 2ème Année Master, Construction Mecanique.