All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Performance of the Boost Chopper, Comparative Study between PI Control and Neural Control to Regulate Its Output Voltage

DOI: 10.4236/sgre.2023.145005, PP. 73-84

Keywords: Chopper, PI Control, Neural Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, we investigate the performance of a boost converter regulating its output voltage using two control methods: Proportional-Integral (PI) control and neural control. Both methods are implemented on a simulation platform (Matlab/Simulink) and evaluated in terms of accuracy, response speed, and robustness to disturbances. Indeed, the output voltage of converters exhibits imperfections that require a control method to optimize efficiency when applying a variable load. Results show that neural control offers superior performance in terms of accuracy and response time, with faster and more precise regulation of the output voltage. On the other hand, PI control proves to be more robust against disturbances. These findings can help guide the selection of the appropriate control method for a boost converter based on the specific requirements of each application.

References

[1]  Zaatri, A. and Belhour, S. (2010) Etude et réalisation d’un hacheur PWM. Revue des énergies Renouvelables, 13, 187-198.
[2]  Lakshmi, M. and Hemamalini, S. (2018) Nonisolated High Gain DC-DC Converter for DC Microgrids. IEEE Transactions on Industrial Electronics, 65, 1205-1212.
https://doi.org/10.1109/TIE.2017.2733463
[3]  Ayang, A. (2020) Diagnostic d’un système photovoltaïque à stockage par estimation paramétrique et commandes ADRC, intégré à une centrale autonome de cogénération d’énergie. PhD, Université du Québec à Chicoutimi, Chicoutimi.
[4]  Potnuru, D. and Kumar, J.S.V.S. (2017) Design of a Front-End DC-DC Converter for a Permanent Magnet DC Motor Using Fuzzy Gain Scheduling. 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Chennai, 21-22 September 2017, 1502-1505.
https://doi.org/10.1109/ICPCSI.2017.8391962
[5]  Jeyasenthil, R., Kobaku, T., Subudhi, B., Sahoo, S. and Dragicevic, T. (2022) Chapter 4. Design and Experimental Validation of Robust PID Control for a Power Converter in a DC Microgrid Application. In: Subudhi, B. and Ray, P.K., Eds., Microgrid Cyberphysical Systems, Elsevier, Amsterdam, 89-114.
https://doi.org/10.1016/B978-0-323-99910-6.00006-2
[6]  Guo, L., Hung, J.Y. and Nelms, R.M. (2009) Evaluation of DSP-Based PID and Fuzzy Controllers for DC-DC Converters. IEEE Transactions on Industrial Electronics, 56, 2237-2248.
https://doi.org/10.1109/TIE.2009.2016955
[7]  Abdelrahman, A., Eid, M., Ren, J., Wang, Y. and Youssef, M. (2016) Efficient Intelligent Control Techniques for DC-DC Converters: A Comparative Study. 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), Karlsruhe, 5-9 September 2016, 1-5.
https://doi.org/10.1109/EPE.2016.7695301
[8]  Boujelben, N., Masmoudi, F., Djemel, M. and Derbel, N. (2017) Design and Comparison of Quadratic Boost and Double Cascade Boost Converters with Boost Converter. 2017 14th International Multi-Conference on Systems, Signals & Devices (SSD), Marrakech, 28-31 March 2017, 245-252.
https://doi.org/10.1109/SSD.2017.8167022
[9]  Forouzesh, M., Siwakoti, Y.P., Gorji, S.A., Blaabjerg, F. and Lehman, B. (2017) Step-Up DC-DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications. IEEE Transactions on Power Electronics, 32, 9143-9178.
https://doi.org/10.1109/TPEL.2017.2652318
[10]  Ye, H., Jin, G., Fei, W. and Ghadimi, N. (2020) High Step-Up Interleaved DC/DC Converter with High Efficiency. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects.
https://doi.org/10.1080/15567036.2020.1716111
[11]  Bahravar, S., Mahery, H.M., Babaei, E. and Sabahi, M. (2012) Mathematical Modeling and Transient Analysis of DC-DC Buck-Boost Converter in CCM. 2012 IEEE 5th India International Conference on Power Electronics (IICPE), Delhi, 6-8 December 2012, 1-6.
https://doi.org/10.1109/IICPE.2012.6450404
[12]  Valluru, S.K., et al. (2018) Design of Multi-Loop L-PID and NL-PID Controllers: An Experimental Validation. 2018 2nd IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, 22-24 October 2018, 1228-1231.
https://doi.org/10.1109/ICPEICES.2018.8897368
[13]  Mahmud, M., Motakabber, S.M.A., Zahirul Alam, A.H.M. and Nordin, A.N. (2020) Adaptive PID Controller Using for Speed Control of the BLDC Motor. 2020 IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, 28-29 July 2020, 168-171.
https://doi.org/10.1109/ICSE49846.2020.9166883
[14]  Rao, V.S., Tapaswi, S. and Kumaravel, S. (2022) Extendable Bidirectional DC-DC Converter with Improved Voltage Transfer Ratio and Reduced Switch Count. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 4, 460-470.
[15]  Maruta, H., Mitsutake, D. and Kurokawa, F. (2014) Transient Characteristics of DC-DC Converter with PID Parameters Selection and Neural Network Control. 2014 13th International Conference on Machine Learning and Applications, Detroit, 3-6 December 2014, 447-452.
https://doi.org/10.1109/ICMLA.2014.78
[16]  Ko, J.-S., Jung, B.-J., Park, K.-T., Choi, C.-H. and Chung, D.-H. (2008) Maximum Power Point Tracking Control of PV System for DC Motors Drive with Neural Network. 2008 International Conference on Smart Manufacturing Application, Goyang-Si, 9-11 April 2008, 514-519.
[17]  Khan, H.S., Mohamed, I.S., Kauhaniemi, K. and Liu, L. (2021) Artificial Neural Network-Based Voltage Control of DC/DC Converter for DC Microgrid Applications. 2021 6th IEEE Workshop on the Electronic Grid (eGRID), New Orleans, 8-10 November 2021, 1-6.
https://doi.org/10.1109/eGRID52793.2021.9662132
[18]  Liu, J., et al. (2021) A Backpropagation Neural Network Controller Trained Using PID for Digitally-Controlled DC-DC Switching Converters. 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA), Chengdu, 1-4 August 2021, 946-951.
https://doi.org/10.1109/ICIEA51954.2021.9516423

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413