全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Rainfall-Runoff Modeling and Hydrological Responses to the Projected Climate Change for Upper Baro Basin, Ethiopia

DOI: 10.4236/ajcc.2023.122011, PP. 219-243

Keywords: Climate Change, Flow Simulation, HEC-HMS, Rainfall-Runoff Modeling, Upper Baro Basin

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents the results of Rainfall-Runoff modeling and simulation of hydrological responses under changing climate using HEC-HMS model. The basin spatial data was processed by HEC-GeoHMS and imported to HEC-HMS. The calibration and validation of the HEC-HMS model was done using the observed hydrometeorological data (1989-2018) and HEC-GeoHMS output data. The goodness-of-fit of the model was measured using three performance indices: Nash and Sutcliffe coefficient (NSE) = 0.8, Coefficient of Determination (R2) = 0.8, and Percent Difference (D) = 0.03, with values showing very good performance of the model. Finally, the optimized HEC-HMS model has been applied to simulate the hydrological responses of Upper Baro Basin to the projected climate change for mid-term (2040s) and long-term (2090s) A1B emission scenarios. The simulation results have shown a mean annual percent decrease of 3.6 and an increase of 8.1 for Baro River flow in the 2040s and 2090s scenarios, respectively, compared to the baseline period (2000s). A pronounced flow variation is rather observed on a seasonal basis, reaching a reduction of 50% in spring and an increase of 50% in autumn for both mid-term and long-term scenarios with respect to the base period. Generally, the rainfall-runoff model is developed to solve, in a complementary way, the two main problems in water resources management: the lack of gauged sites and future hydrological response to climate change data of the basin and the region in general. The study results imply that seasonal and time variation in the hydrologic cycle would most likely cause hydrologic extremes. And hence, the developed model and output data are of paramount importance for adaptive strategies and sustainable water resources development in the basin.

References

[1]  Abegaz, W. B. (2020). Temperature and Rainfall Trends in North Eastern Ethiopia. International Journal of Environmental Sciences & Natural Resources, 25, Article ID: 556163.
https://doi.org/10.19080/IJESNR.2020.25.556163
[2]  Admassu, S., & Seid, I. A. H. (2006). Analysis of Rainfall Trend in Ethiopia. Ethiopian Journal of Science and Technology, 3, 15-30.
[3]  Ahmadi, M., Haddad, O. B., & Loáiciga, H. A. (2015). Adaptive Reservoir Operation Rules under Climatic Change. Water Resources Management, 29, 1247-1266.
https://doi.org/10.1007/s11269-014-0871-0
[4]  Ali, H., Modi, P., & Mishra, V. (2019). Increased Flood Risk in Indian Sub-Continent under the Warming Climate. Weather and Climate Extremes, 25, Article ID: 100212.
https://doi.org/10.1016/j.wace.2019.100212
[5]  Alsubeai, A., & Burckhard, S. R. (2021). Rainfall-Runoff Simulation and Modelling Using HEC-HMS and HEC-RAS Models: Case Study Tabuk, Saudi Arabia. Natural Resources, 12, 321-338.
https://doi.org/10.4236/nr.2021.1210022
[6]  ben Khélifa, W., & Mosbahi, M. (2021). Modeling of Rainfall-Runoff Process Using HEC-HMS Model for an Urban Ungauged Watershed in Tunisia. Modeling Earth Systems and Environment, 8, 1749-1758.
https://doi.org/10.1007/s40808-021-01177-6
[7]  Bhatti, A. Z., Farooque, A. A., Krouglicof, N., Peters, W., Acharya, B., Li, Q., & Ahsan, M. S. (2021). Climate Change Impacts on Precipitation and Temperature in Prince Edward Island, Canada. World Water Policy, 7, 9-29.
https://doi.org/10.1002/wwp2.12046
[8]  Brekke, L. D., Maurer, E. P., Anderson, J. D., Dettinger, M. D., Townsley, E. S., Harrison, A., & Pruitt, T. (2009). Assessing Reservoir Operations Risk under Climate Change. Water Resources Research, 45, W04411.
https://doi.org/10.1029/2008WR006941
[9]  Carvajal, Y., Ocampo, C., & Peña, L. E. (2019). Storm Water Management Model Simulation and Evaluation of the Eastern urban Drainage System of Cali in the Face of Climate Variability Scenarios. Ingeniería y Competitividad, 21, 1-11.
https://doi.org/10.25100/iyc.v21i2.8046
[10]  Cradock-Henry, N. A., Frame, B., Preston, B. L., Reisinger, A., & Rothman, D. S. (2018). Dynamic Adaptive Pathways in Downscaled Climate Change Scenarios. Climatic Change, 150, 333-341.
https://doi.org/10.1007/s10584-018-2270-7
[11]  Cunderlik, J. M., & Simonovic, S. P. (2007). Inverse Flood Risk Modelling under Changing Climatic Conditions. Hydrological Processes, 21, 563-577.
https://doi.org/10.1002/hyp.6225
[12]  Dile, Y. T., & Srinivasan, R. (2014). Evaluation of CFSR Climate Data for Hydrologic Prediction in Data-Scarce Watersheds: An Application in the Blue Nile River Basin. Journal of the American Water Resources Association, 50, 1226-1241.
https://doi.org/10.1111/jawr.12182
[13]  Elzopy, K. A., Chaturvedi, A. K., Chandran, K. M., Gopinath, G., Naveena, K., & Surendran, U. (2021). Trend Analysis of Long-Term Rainfall and Temperature Data for Ethiopia. South African Geographical Journal, 103, 381-394.
https://doi.org/10.1080/03736245.2020.1835699
[14]  Getachew, B., Manjunatha, B. R., & Bhat, H. G. (2021). Modeling Projected Impacts of Climate and Land Use/Land Cover Changes on Hydrological Responses in the Lake Tana Basin, Upper Blue Nile River Basin, Ethiopia. Journal of Hydrology, 595, Article ID: 125974.
https://doi.org/10.1016/j.jhydrol.2021.125974
[15]  Geyisa Namara, W., Adugna Damise, T., & Gudu Tufa, F. (2020). Rainfall Runoff Modeling Using HEC-HMS: The Case of Awash Bello Sub-Catchment, Upper Awash Basin, Ethiopia. International Journal of Environment, 9, 68-86.
https://doi.org/10.3126/ije.v9i1.27588
[16]  Hyandye, C. B., Worqul, A., Martz, L. W., & Muzuka, A. N. N. (2018). The Impact of Future Climate and Land Use/Cover Change on Water Resources in the Ndembera Watershed and Their Mitigation and Adaptation Strategies. Environmental Systems Research, 7, Article No. 7.
https://doi.org/10.1186/s40068-018-0110-4
[17]  Ibrahim Mohammed, J. (2020). Surface Water Potential Assessment by Using HEC-HMS (Case Study Dabus Sub Basin, Abay/Nile Basin, Ethiopia). International Journal of Energy and Environmental Science, 5, 101-110.
https://doi.org/10.11648/j.ijees.20200506.11
[18]  IPCC (2007). Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC. Science, October 2009.
[19]  IPCC (2021). Climate Change 2021—the Physical Science Basis—Summary for Policemakers.
[20]  IPCC (2022). Strengthening and Implementing the Global Response. In Global Warming of 1.5 ˚C: IPCC Special Report on Impacts of Global Warming of 1.5 ˚C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (pp. 313-444). Cambridge University Press.
https://doi.org/10.1017/9781009157940.006
[21]  IPCC Intergovernmental Panel on Climate Change (2014). Fifth Assessment Report: Climate Change 2014 (AR5). In Climate Change 2007: Synthesis Report.
[22]  Jones, J. A. A. (1999). Climate Change and Sustainable Water Resources: Placing the Threat of Global Warming in Perspective. Hydrological Sciences Journal, 44, 541-557.
https://doi.org/10.1080/02626669909492251
[23]  Kourtis, I. M., & Tsihrintzis, V. A. (2021). Adaptation of Urban Drainage Networks to Climate Change: A Review. Science of the Total Environment, 771, Article ID: 145431.
https://doi.org/10.1016/j.scitotenv.2021.145431
[24]  Kure, S., & Tebakari, T. (2012). Hydrological Impact of Regional Climate Change in the Chao Phraya River Basin, Thailand. Hydrological Research Letters, 6, 53-58.
https://doi.org/10.3178/hrl.6.53
[25]  Mateus, C., & Tullos, D. (2017). Reliability, Sensitivity, and Uncertainty of Reservoir Performance under Climate Variability in Basins with Different Hydrogeologic Settings in Northwestern United States. International Journal of River Basin Management, 15, 21-37.
https://doi.org/10.1080/15715124.2016.1247361
[26]  Moriasi, D. N., Arnold, J. G., van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50, 885-900.
https://doi.org/10.13031/2013.23153
[27]  Muleta, T. N. (2021). Climate Change Scenario Analysis for Baro-Akobo River Basin, Southwestern Ethiopia. Environmental Systems Research, 10, Article No. 24.
https://doi.org/10.1186/s40068-021-00225-5
[28]  Musau, J., Sang, J., Gathenya, J., & Luedeling, E. (2015). Hydrological Responses to Climate Change in Mt. Elgon Watersheds. Journal of Hydrology: Regional Studies, 3, 233-246.
https://doi.org/10.1016/j.ejrh.2014.12.001
[29]  Patil, V. K., Saraf, V. R., Karad, O. V., Ghodke, S. B., Gore, D., & Dhekale, S. S. (2019). Simulation of Rainfall Runoff Process Using HEC-HMS Model for Upper Godavari Basin Maharashtra, India. European Journal of Engineering Research and Science, 4, 102-107.
[30]  Quan, V. D., & Kittiwet, K. (2020). Identifying Adaptive Reservoir Operation for Future Climate Change Scenarios: A Case Study in Central Vietnam. Water Resources, 47, 189-199.
https://doi.org/10.1134/S009780782002013X
[31]  Raj Kafle, M. (2019). Rainfall-Runoff Modelling of Koshi River Basin Using HEC-HMS. Journal of Hydrogeology & Hydrologic Engineering, 8, 1.
[32]  Raje, D., & Mujumdar, P. P. (2010). Reservoir Performance under Uncertainty in Hydrologic Impacts of Climate Change. Advances in Water Resources, 33, 312-326.
https://doi.org/10.1016/j.advwatres.2009.12.008
[33]  Rientjes, T. H. M., Perera, J. B. U., Haile, A. T., Gieske, A. S. M., Booij, M. J., & Reggiani, P. (2011). Hydrological Balance of Lake Tana, Upper Blue Nile Basin, Ethiopia. In A. M. Melesse (Ed.), Nile River Basin (pp. 69-89). Springer.
https://doi.org/10.1007/978-94-007-0689-7_3
[34]  Rodrigues, A. L. M., Reis, G. B., dos Santos, M. T., da Silva, D. D., dos Santos, V. J., de Siqueira Castro, J., & Calijuri, M. L. (2019). Influence of Land Use and Land Cover’s Change on the Hydrological Regime at a Brazilian Southeast Urbanized Watershed. Environmental Earth Sciences, 78, Article No. 595.
https://doi.org/10.1007/s12665-019-8601-9
[35]  Sahu, S., Pyasi, S. K., Galkate, R. V., & Shrivastava, R. N. (2020). Rainfall-Runoff Modeling Using HEC-HMS Model for Shipra River Basin in Madhya Pradesh, India. International Journal of Current Microbiology and Applied Sciences, 9, 3440-3449.
https://doi.org/10.20546/ijcmas.2020.908.398
[36]  Schneider, S. H., Easterling, W. E., & Mearns, L. O. (2000). Adaptation: Sensitivity to Natural Variability, Agent Assumptions and Dynamic Climate Changes. Climatic Change, 45, 203-221.
https://doi.org/10.1023/A:1005657421149
[37]  Sheer, D. P., Rivera, M. W., Wright, B. A., Day, G. N., & Stanford, B. D. (2014). Dynamic Reservoir Operations: Managing for Climate Variability and Change. Water Research Foundation.
[38]  Shekar, P. R. (2021). Rainfall-Runoff Modelling of a River Basin Using HEC HMS: A Review Study. International Journal for Research in Applied Science and Engineering Technology, 9, 506-508.
https://doi.org/10.22214/ijraset.2021.38004
[39]  Sireesha Naidu, G., Pratik, M., & Rehana, S. (2020). Modelling Hydrological Responses under Climate Change Using Machine Learning Algorithms—Semi-Arid River Basin of Peninsular India. H2Open Journal, 3, 481-498.
https://doi.org/10.2166/h2oj.2020.034
[40]  Wale Worqlul, A., Taddele, Y. D., Ayana, E. K., Jeong, J., Adem, A. A., & Gerik, T. (2018). Impact of Climate Change on Streamflow Hydrology in Headwater Catchments of the Upper Blue Nile Basin, Ethiopia. Water (Switzerland), 10, 120.
https://doi.org/10.3390/w10020120
[41]  Woldesenbet, T. A., Elagib, N. A., Ribbe, L., & Heinrich, J. (2017). Hydrological Responses to Land Use/Cover Changes in the Source Region of the Upper Blue Nile Basin, Ethiopia. Science of the Total Environment, 575, 724-741.
https://doi.org/10.1016/j.scitotenv.2016.09.124

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133