全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

求解约束优化问题的改进樽海鞘算法
An Improved Salp Swarm Algorithm for Con-strained Optimization Problems

DOI: 10.12677/AAM.2023.125216, PP. 2128-2137

Keywords: 约束优化问题,外点罚函数法,樽海鞘算法,双领导者策略,败者淘汰策略,数值实验
Constrained Optimization Problem
, Outer Point Penalty Function Method, Salp Swarm Algorithm, Two-Leader Strategy, Loser’s Elimination Strategy, Numerical Experiment

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对约束优化问题,提出了一种运用改进樽海鞘算法求解约束优化问题的方法。通过外点法将约束优化问题转化为一系列无约束优化问题,然后运用双领导者结合败者淘汰策略的樽海鞘算法(DLSSA),并对所得界约束优化问题进行求解以获得约束问题的解。利用6个约束优化基准测试问题对所得算法进行数值实验,实验结果表明,对于所有问题算法,PF-DLSSA所求解均优于算法PF-SSA所求解,即实验所得的最优值及其他数据都优于对比算法PF-SSA所求,所得算法能够有效地求解约束优化问题,且比对比算法效果要好。
Aiming at the constrained optimization problem, an improved salp swarm algorithm was proposed to solve the constrained optimization problem. The constrained optimization problem is trans-formed into a series of unconstrained optimization problems by the outer point method, and then the salp swarm algorithm (DLSSA), which combines the two-leader and loser elimination strategy, is used to solve the unconstrained optimization problem to obtain the solution of the constrained problem. The numerical experiments of the proposed algorithm are carried out by using six con-straint optimization benchmark problems. Experimental results show that, for all problem algo-rithms, the solution of algorithm PF-DLSSA is superior to that of algorithm PF-SSA, that is, the opti-mal value and other data obtained by the experiment are superior to that obtained by the compar-ison algorithm PF-SSA. The proposed algorithm can effectively solve constrained optimization problems, and the effect is better than that of the comparison algorithm.

References

[1]  贺向阳, 徐玲. 一个求解有约束的全局优化问题的变换函数法[J]. 科学技术与工程, 2008, 8(24): 6445-6447+ 6462.
[2]  刘爱兵. 基于外点罚函数法门式起重机箱型主梁的优化设计[J]. 机械工程师, 2014(11): 211-213.
[3]  李金龙, 江征风, 万鹏. 内点罚函数法在链传动优化设计中的应用[J]. 现代机械, 2003(2): 21-80.
[4]  叶峰, 邵之江, 梁昔明, 钱积新. Lagrange乘子初始值和罚因子迭代方式的研究[J]. 厦门大学学报(自然科学版), 2001(S1): 34-38.
[5]  刘文斌. 有约束的多目标优化问题[J]. 经济数学, 1986(3): 66-70.
[6]  王吉权, 程志文, 张攀利, 代伟婷. 求解有约束优化问题的实数遗传算法改进研究[J]. 控制与决策, 2019, 34(5): 937-946.
[7]  陈忠云, 张达敏, 辛梓芸. 正弦余弦算法的樽海鞘群算法[J]. 计算机应用与软件, 2020, 37(9): 209-214.
[8]  陈忠云, 张达敏, 辛梓芸. 多子群的共生非均匀高斯变异樽海鞘群算法[J]. 自动化学报, 2022, 48(5): 1307-1317.
[9]  He, M. and Lang, C. (2021) Salp Swarm Algorithm with Crossover Scheme and Lévy Flight for Global Optimization. Journal of Intelligent & Fuzzy Systems, 40, 1-12.
[10]  周淑娟. 基于罚函数法的汽车动力传动系统参数优化匹配研究[J]. 汽车维修, 2023(1): 27-30.
[11]  王林军, 王锬, 杜义贤, 徐柳, 黄文超, 刘晋玮. 一种基于外罚函数法的结构可靠性分析方法[J]. 三峡大学学报(自然科学版), 2019, 41(1): 92-96.
[12]  李根. 基于内点罚函数法及Visual Basic螺旋弹簧优化设计[J]. 汽车工艺师, 2020(12): 37-39+43.
[13]  Li, W., Wang, G. and Alavi, A.H. (2020) Learning-Based Elephant Herding Optimization Algorithm for Solving Numerical Optimization Problems. Knowledge-Based Systems, 195, Article ID: 105675.
https://doi.org/10.1016/j.knosys.2020.105675

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133