全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高阶非厄米系统的灵敏度研究
Study of the Sensitivity of High-Order Non-Hermitian System

DOI: 10.12677/APP.2023.135023, PP. 195-201

Keywords: 非厄米系统,PT对称系统,奇异点,灵敏度
Non-Hermitian System
, PT Symmetry, Exceptional Point, Enhanced Sensitivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

我们提出了一个由三个无源谐振器组成的高阶系统的结构,近年来,相干完美吸收在各个方面受到越来越多的关注。相干完美吸收可以用于传感器的研究,我们将基于三态PT对称系统,通过分别对任何一个暗谐振器施加非本征扰动,我们可以清楚地观察到与微扰的立方根相关的频率响应。
We present the structure of a higher-order system consisting of three passive resonators, which have attracted increasing attention in recent years for coherent perfect absorption. Coherent perfect absorption can be used for the study of sensors, and we go over it based on a three-state PT symmetric system. The frequency response associated with the cubic root of the perturbation is clearly observed by applying a non-eigenetic perturbation to any of the dark resonators separately.

References

[1]  Wiersig, J. (2014) Enhancing the Sensitivity of Frequency and Energy Splitting Detection by Using Exceptional Points: Application to Microcavity Sensors for Single-Particle Detection. Physical Review Letters, 112, Article ID: 203901.
https://doi.org/10.1103/PhysRevLett.112.203901
[2]  Chen, P.-Y. and Jung, J. (2016) PT-Symmetry and Singularity-Enhanced Sensing Based on Photoexcited Graphene Metasurfaces. Physical Review Applied, 5, Article ID: 064018.
https://doi.org/10.1103/PhysRevApplied.5.064018
[3]  Lin, Z., Pick, A., Lon?ar, M. and Rodri-guez, A.W. (2016) Enhanced Spontaneous Emission at Third-Order Dirac Exceptional Points in Inverse-Designed Photonic Crystals. Physical Review Letters, 117, Article ID: 107402.
https://doi.org/10.1103/PhysRevLett.117.107402
[4]  Hodaei, H., Hassan, A.U., Wittek, S., Garcia-Gracia, H., El-Ganainy, R., Christodoulides, D.N. and Khajavikhan, M. (2017) Enhanced Sensitivity at Higher-Order Excep-tional Points. Nature, 548, 187-191.
https://doi.org/10.1038/nature23280
[5]  Chen, W., ?zdemir, ?.K., Zhao, G., Wiersig, J. and Yang, L. (2017) Exceptional Points Enhance Sensing in an Optical Microcavity. Nature, 548, 192-196.
https://doi.org/10.1038/nature23281
[6]  Heiss, W.D. (2012) The Physics of Exceptional Points. Journal of Physics A: Mathematical and Theoretical, 45, Article ID: 444016.
https://doi.org/10.1088/1751-8113/45/44/444016
[7]  Yin, C., Jiang, H., Li, L., et al. (2018) Geometrical Meaning of Winding Number and Its Characterization of Topological Phases in One-Dimensional Chiral Non-Hermitian Systems. Physical Review A, 97, Article ID: 052115.
https://doi.org/10.1103/PhysRevA.97.052115
[8]  Leykam, D., Bliokh, K.Y., Huang, C., et al. (2017) Edge Modes, Degeneracies, and Topological Numbers in Non- Hermitian Systems. Physical Review Letters, 118, Article ID: 040401.
https://doi.org/10.1103/PhysRevLett.118.040401
[9]  Jing, D.Y., Wang, H.Y. and Liu, W.M. (2022) Topo-logical Transition and Majorana Zero Modes in 2D Non-Hermitian Chiral Superconductor with Anisotropy. Journal of Physics: Condensed Matter, 34, Article ID: 195401.
https://doi.org/10.1088/1361-648X/ac54e2
[10]  Jin, L. and Song, Z. (2019) Bulk-Boundary Correspondence in a Non-Hermitian System in One Dimension with Chiral Inversion Symmetry. Physical Review B, 99, Article ID: 081103.
https://doi.org/10.1103/PhysRevB.99.081103
[11]  Lü, H., Wang, C., Yang, L., et al. (2018) Opto-mechanically Induced Transparency at Exceptional Points. Physical Review Applied, 10, Article ID: 014006.
https://doi.org/10.1103/PhysRevApplied.10.014006
[12]  Wang, C., Jiang, X., Zhao, G., et al. (2020) Elec-tromagnetically Induced Transparency at a Chiral Exceptional Point. Nature Physics, 16, 334-340.
https://doi.org/10.1038/s41567-019-0746-7
[13]  Zhang, H., Saif, F., Jiao, Y., et al. (2018) Loss-Induced Transparency in Optomechanics. Optics Express, 26, 25199- 25210.
https://doi.org/10.1364/OE.26.025199
[14]  Smith, D.D., Chang, H., Fuller, K.A., et al. (2004) Cou-pled-Resonator-Induced Transparency. Physical Review A, 69, Article ID: 063804.
https://doi.org/10.1103/PhysRevA.69.063804
[15]  Qin, H., Ding, M. and Yin, Y. (2020) Induced Transpar-ency with Optical Cavities. Advanced Photonics Research, 1, Article ID: 2000009.
https://doi.org/10.1002/adpr.202000009
[16]  Huang, Y., Shen, Y., Min, C., et al. (2017) Unidirectional Re-flectionless Light Propagation at Exceptional Points. Nanophotonics, 6, 977-996.
https://doi.org/10.1515/nanoph-2017-0019
[17]  An, S., Liu, T., Liang, S., et al. (2021) Unidirectional Invisi-bility of an Acoustic Multilayered Medium with Parity- Time-Symmetric Impedance Modulation. Journal of Applied Physics, 129, Article ID: 175106.
https://doi.org/10.1063/5.0039432
[18]  Rudnik, V.E., Ufa, R.A. and Malkova, Y.Y. (2022) Analysis of Low-Frequency Oscillation in Power System with Renewable Energy Sources. Energy Reports, 8, 394-405.
https://doi.org/10.1016/j.egyr.2022.07.022
[19]  Valle, D.B. and Araujo, P.B. (2015) The Influence of GUPFC FACTS Device on Small Signal Stability of the Electrical Power Systems. International Journal of Electrical Power & Energy Systems, 65, 299-306.
https://doi.org/10.1016/j.ijepes.2014.10.012
[20]  Kishor, N., Haarla, L., Sepp?nen, J., et al. (2013) Fixed-Order Controller for Reduced-Order Model for Damping of Power Oscillation in Wide Area Network. In-ternational Journal of Electrical Power & Energy Systems, 53, 719-732.
https://doi.org/10.1016/j.ijepes.2013.05.048
[21]  Balasiu, F., Lazar, F.M. and Balaurescu, R. (2009) Defense Plan against Major Disturbances of the Romanian EPS. 2009 IEEE Power & Energy Society General Meeting, Calgary, 26-30 July 2009, 1-7.
https://doi.org/10.1109/PES.2009.5275600
[22]  Wagner, M., Ivleva, N.P., Haisch, C., et al. (2009) Combined Use of Confocal Laser Scanning Microscopy (CLSM) and Raman Microscopy (RM): Investigations on EPS-Matrix. Water Research, 43, 63-76.
https://doi.org/10.1016/j.watres.2008.10.034
[23]  Kang, Y., Zhou, X.E., Gao, X., et al. (2015) Crystal Struc-ture of Rhodopsin Bound to Arrestin by Femtosecond X-Ray Laser. Nature, 523, 561-567.
https://doi.org/10.1038/nature14656
[24]  Schaffler, K., Nicolas, L.B., Borta, A., et al. (2017) Investigation of the Predictive Validity of Laser-EPs in Normal, UVB-Inflamed and Capsaicin-Irritated Skin with Four Analgesic Compounds in Healthy Volunteers. British Journal of Clinical Pharmacology, 83, 1424-1435.
https://doi.org/10.1111/bcp.13247
[25]  Hassan, A.N., Frank, J.F. and Qvist, K.B. (2002) Direct Observation of Bacterial Exopolysaccharides in Dairy Products Using Confocal Scanning Laser Microscopy. Journal of Dairy Science, 85, 1705-1708.
https://doi.org/10.3168/jds.S0022-0302(02)74243-4
[26]  Longhi, S. (2010) Backward Lasing Yields a Perfect Absorber. Physics, 3, 61.
https://doi.org/10.1103/Physics.3.61
[27]  Sun, Y., Tan, W., Li, H., et al. (2014) Experimental Demonstration of a Coherent Perfect Absorber with PT Phase Transition. Physical Review Letters, 112, Article ID: 143903.
https://doi.org/10.1103/PhysRevLett.112.143903
[28]  Pu, M., Feng, Q., Hu, C. and Luo, X. (2012) Perfect Absorption of Light by Coherently Induced Plasmon Hybridization in Ultrathin Metamaterial Film. Plasmonics, 7, 733-738.
https://doi.org/10.1007/s11468-012-9365-1
[29]  Niesler, F.B.P., Gansel, J.K., Fischbach, S. and Wegener, M. (2012) Metamaterial Metal-Based Bolometers. Applied Physics Letters, 100, Article ID: 203508.
https://doi.org/10.1063/1.4714741
[30]  Alves, F., Kearney, B., Grbovic, D. and Karunasiri, G. (2012) Narrowband Terahertz Emitters Using Metamaterial Films. Optics Express, 20, 21025-21032.
https://doi.org/10.1364/OE.20.021025
[31]  Alves, F., Grbovic, D., Kearney, B., Lavrik, N.V. and Karunasiri, G. (2013) Bi-Material Terahertz Sensors Using Metamaterial Structures. Optics Express, 21, 13256-13271.
https://doi.org/10.1364/OE.21.013256
[32]  Kang, M., Liu, F. and Li, J. (2013) Effective Spontaneous PT-Symmetry Breaking in Hybridized Metamaterials. Physical Review A, 87, Article ID: 053824.
https://doi.org/10.1103/PhysRevA.87.053824
[33]  Baviskar, J., Mulla, A., Baviskar, A., et al. (2016) Met-amaterial Lens Incorporated Enhanced Gain Omnidirectional Conformal Patch Antenna. 2016 IEEE Aerospace Conference, Big Sky, 5-12 March 2016, 1-7.
https://doi.org/10.1109/AERO.2016.7500732
[34]  Mavidis, C.P., Tasolamprou, A.C., Economou, E.N., et al. (2020) Polaritonic Cylinders as Multifunctional Metamaterials: Single Scattering and Effective Medium Description. Physical Review B, 102, Article ID: 155310.
https://doi.org/10.1103/PhysRevB.102.155310
[35]  Jackson Jr., C., Reynolds, P.J. and Lindahl, I.L. (1975) Effect of Cyclophosphamide on Erythrocyte and Plasma Acetycholinesterase Activity in Sheep. Journal of Animal Science, 41, 1390-1393.
https://doi.org/10.2527/jas1975.4151390x
[36]  Grossherr, M., Hengstenberg, A., Meier, T., et al. (2006) Discontinuous Monitoring of Propofol Concentrations in Expired Alveolar Gas and in Arterial and Venous Plasma during Artificial Ventilation. The Journal of the American Society of Anesthesiologists, 104, 786-790.
https://doi.org/10.1097/00000542-200604000-00024
[37]  Spence, J.D., Malinow, M.R., Barnett, P.A., et al. (1999) Plasma Homocyst (e)ine Concentration, but Not MTHFR Genotype, Is Associated with Variation in Carotid Plaque Area. Stroke, 30, 969-973.
https://doi.org/10.1161/01.STR.30.5.969
[38]  Luo, X., Cheng, Z.Q., Zhai, X., et al. (2019) A Tunable Du-al-Band and Polarization-Insensitive Coherent Perfect Absorber Based on Double-Layers Graphene Hybrid Waveguide. Nanoscale Research Letters, 14, Article No. 337.
https://doi.org/10.1186/s11671-019-3155-z
[39]  Sun, W., Wu, T., Wang, L., et al. (2019) The Role of Gra-phene Loading on the Corrosion-Promotion Activity of Graphene/Epoxy Nanocomposite Coatings. Composites Part B: Engineering, 173, Article ID: 106916.
https://doi.org/10.1016/j.compositesb.2019.106916
[40]  Ning, Y., Dong, Z., Si, J., et al. (2017) Tunable Po-larization-Independent Coherent Perfect Absorber Based on a Metal-Graphene Nanostructure. Optics Express, 25, 32467-32474.
https://doi.org/10.1364/OE.25.032467
[41]  Ding, J., Zhao, H. and Yu, H. (2020) Superior to Graphene: Super-Anticorrosive Natural Mica Nanosheets. Nanoscale, 12, 16253-16261.
https://doi.org/10.1039/D0NR05040G
[42]  Limpert, J., et al. (2004) All Fiber CPA System Based on Air-Guiding Photonic Bandgap Fiber Compressor. Conference on Lasers and Electro-Optics, San Francisco, 16-21 May 2004, 2.
[43]  Sobon, G., Klimczak, M., Sotor, J., et al. (2014) Infrared Supercontinuum Generation in Soft-Glass Photonic Crystal Fibers Pumped at 1560 nm. Optical Materials Express, 4, 7-15.
https://doi.org/10.1364/OME.4.000007
[44]  Ogino, J., Sueda, K., Kurita, T., et al. (2013) Development of High-Energy Fiber CPA System. EPJ Web of Conferences, 59, Article No. 07004.
https://doi.org/10.1051/epjconf/20135907004
[45]  Wang, H., Kong, W., Zhang, P., et al. (2019) Coherent Perfect Absorption Laser Points in One-Dimensional Anti-Parity- Time-Symmetric Photonic Crystals. Applied Sci-ences, 9, Article No. 2738.
https://doi.org/10.3390/app9132738
[46]  Ni, H., Zhou, G., Chen, X., et al. (2023) Non-Reciprocal Spatial and Quasi-Reciprocal Angular Goos-H?nchen Shifts around Double CPA-LPs in PT-Symmetric Thue-Morse Photonic Crystals. Optics Express, 31, 1234-1248.
https://doi.org/10.1364/OE.479595

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133