|
DS-8201a治疗HER2表达实体肿瘤的研究进展
|
Abstract:
在精准治疗背景下,针对各种肿瘤驱动基因的靶向治疗极大地改变了当今的治疗现状。表皮生长因子受体2 (Human Epidermal Growth Factor Receptor 2; HER2)是多种肿瘤的驱动基因,DS-8201a (Trastuzumab deruxtecan; T-Dxd)作为一种新型靶向HER2的抗体偶联药物(Antibody-Drug Conju-gates; ADC),不仅对HER2过表达的肿瘤具有抗肿瘤作用,而且对于HER2低表达、扩增及突变患者也具有不错的疗效。目前DS-8201a已经在多种实体瘤中进行了广泛的临床研究。本文概述了DS-8201a的结构和作用特点,并介绍其在各种实体肿瘤中的研究进展,为未来的精准靶向治疗提供方向。
In the context of precision therapy, targeted therapy for various tumor driver genes has greatly changed the current therapeutic status. The epidermal growth factor receptor 2 (HER2) is a wide variety of tumor driver gene, DS-8201a (Trastuzumab deruxtecan; T-Dxd; Enhertu) as a novel HER2-targeting Antibody-drug conjugates (ADC), not only has antitumor effect on tumors with overexpression of HER2, but also has efficacy in patients with low expression, amplification and mutation of HER2. DS-8201a has been extensively tested in clinical trials in a variety of solid tumors. This article summarizes the structure and functional characteristics of DS-8201a, and introduces its research progress in various solid tumors, and provides directions for future precise targeted therapy.
[1] | Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660 |
[2] | Kovtun, Y.V. and Goldmacher, V.S. (2007) Cell Killing by Anti-body-Drug Conjugates. Cancer Letters, 255, 232-240.
https://doi.org/10.1016/j.canlet.2007.04.010 |
[3] | 曾铖, 张剑. 抗体偶联药物应用于乳腺癌治疗的研究进展[J]. 中国临床新医学, 2022, 15(6): 477-481. |
[4] | 陆宁, 佟仲生. 抗体药物偶联物在乳腺癌中的研究进展[J]. 中国慢性病预防与控制, 2021, 29(7): 535-538. |
[5] | K?llsten, M., Hartmann, R., Kovac, L., et al. (2020) Investigating the Im-pact of Sample Preparation on Mass Spectrometry-Based Drug-to-Antibody Ratio Determination for Cysteine- and Ly-sine-Linked Antibody-Drug Conjugates. Antibodies (Basel), 93, Article No. 46. https://doi.org/10.3390/antib9030046 |
[6] | 朱逸晖, 李婷, 胡夕春. Trastuzumab Deruxtecan的临床研究进展及展望——HER2耐药患者的新希望[J]. 中国癌症杂志, 2021, 31(8): 754-761. |
[7] | Doi, T., Shitara, K., Naito, Y., et al. (2017) Safety, Pharmacokinetics, and Antitumour Activity of Trastuzumab Deruxtecan (DS-8201), a HER2-Targeting Antibody-Drug Conjugate, in Patients with Advanced Breast and Gastric or Gastro-Oesophageal Tumours: A Phase 1 Dose-Escalation Study. The Lancet Oncology, 18, 1512-1522.
https://doi.org/10.1016/S1470-2045(17)30604-6 |
[8] | Ogitani, Y., Aida, T., Hagihara, K., et al. (2016) DS-8201a, a Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Effi-cacy with Differentiation from T-DM1. Clinical Cancer Research, 22, 5097-5108. https://doi.org/10.1158/1078-0432.CCR-15-2822 |
[9] | (2021) Trastuzumab Deruxtecan Data Impresses at ESMO. Cancer Discovery, 11, 2664-2665.
https://doi.org/10.1158/2159-8290.CD-NB2021-0382 |
[10] | Gonzalez-Angulo, A.M., Litton, J.K., Broglio, K.R., et al. (2009) High Risk of Recurrence for Patients with Breast Cancer Who Have Human Epidermal Growth Factor Recep-tor 2-Positive, Node-Negative Tumors 1 cm or Smaller. Journal of Clinical Oncology, 27, 5700-5706. https://doi.org/10.1200/JCO.2009.23.2025 |
[11] | Onitilo, A.A., Engel, J.M., Greenlee, R.T., et al. (2009) Breast Cancer Subtypes Based on ER/PR and Her2 Expression: Comparison of Clinicopathologic Features and Survival. Clini-cal Medicine & Research, 7, 4-13.
https://doi.org/10.3121/cmr.2008.825 |
[12] | Slamon, D.J., Clark, G.M., Wong, S.G., et al. (1987) Human Breast Cancer: Correlation of Relapse and Survival with Amplification of the HER-2/Neu Oncogene. Science, 235, 177-182. https://doi.org/10.1126/science.3798106 |
[13] | Modi, S., Saura, C., Yamashita, T., et al. (2020) Trastuzumab Deruxtecan in Previously Treated HER2-Positive Breast Cancer. The New England Journal of Medicine, 382, 610-621. https://doi.org/10.1056/NEJMoa1914510 |
[14] | Cortes, J., Kim, S.B., Chung, W.P., et al. (2022) Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer. The New England Journal of Medicine, 386, 1143-1154. https://doi.org/10.1056/NEJMoa2115022 |
[15] | 雷蕾, 王晓稼. 从ADC药物发展看乳腺癌精准靶向治疗未来[J]. 肿瘤学杂志, 2021, 27(7): 515-520. |
[16] | Modi, S., Jacot, W., Yamashita, T., et al. (2022) Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. The New England Journal of Medicine, 387, 9-20. https://doi.org/10.1056/NEJMoa2203690 |
[17] | 王帅, 崔中豪, 杨毅. HER2阳性乳腺癌脑转移的靶向治疗研究进展[J]. 医学研究生学报, 2020, 33(2): 215-219. |
[18] | Brosnan, E.M. and Anders, C.K. (2018) Understanding Pat-terns of Brain Metastasis in Breast Cancer and Designing Rational Therapeutic Strategies. Annals of Translational Medi-cine, 69, Article No. 163.
https://doi.org/10.21037/atm.2018.04.35 |
[19] | Iwata, T.N., Ishii, C., Ishida, S., et al. (2018) A HER2-Targeting An-tibody-Drug Conjugate, Trastuzumab Deruxtecan (DS-8201a), Enhances Antitumor Immunity in a Mouse Model. Mo-lecular Cancer Therapeutics, 17, 1494-1503.
https://doi.org/10.1158/1535-7163.MCT-17-0749 |
[20] | Indini, A., Rijavec, E. and Grossi, F. (2021) Trastuzumab Deruxtecan: Changing the Destiny of HER2 Expressing Solid Tumors. International Journal of Molecular Sciences, 22, Article No. 4774. https://doi.org/10.3390/ijms22094774 |
[21] | 李佳雨, 王风华. DS-8201开启了HER2阳性晚期胃癌靶向治疗新篇章[J]. 循证医学, 2021, 21(5): 273-277. |
[22] | Shitara, K., Bang, Y.J., Iwasa, S., et al. (2020) Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. The New England Journal of Medicine, 382, 2419-2430. https://doi.org/10.1056/NEJMoa2004413 |
[23] | Aoki, M., Iwasa, S. and Boku, N. (2021) Trastuzumab Deruxtecan for the Treatment of HER2-Positive Advanced Gastric Cancer: A Clinical Perspective. Gastric Cancer, 24, 567-576. https://doi.org/10.1007/s10120-021-01164-x |
[24] | Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492 |
[25] | Díaz-Serrano, A., Gella, P., Jiménez, E., et al. (2018) Targeting EGFR in Lung Cancer: Current Standards and Developments. Drugs, 78, 893-911. https://doi.org/10.1007/s40265-018-0916-4 |
[26] | Gu, F.F., Zhang, Y., Liu, Y.Y., et al. (2016) Lung Adenocarci-noma Harboring Concomitant SPTBN1-ALK Fusion, c-Met Overexpression, and HER-2 Amplification with Inherent Resistance to Crizotinib, Chemotherapy, and Radiotherapy. Journal of Hematology & Oncology, 91, Article No. 66. https://doi.org/10.1186/s13045-016-0296-8 |
[27] | Murtuza, A., Bulbul, A., Shen, J.P., et al. (2019) Novel Third-Generation EGFR Tyrosine Kinase Inhibitors and Strategies to Overcome Therapeutic Resistance in Lung Cancer. Cancer Research, 79, 689-698.
https://doi.org/10.1158/0008-5472.CAN-18-1281 |
[28] | Ramalingam, S.S., Yang, J.C., Lee, C.K., et al. (2018) Osimertinib as First-Line Treatment of EGFR Mutation-Positive Advanced Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 36, 841-849.
https://doi.org/10.1200/JCO.2017.74.7576 |
[29] | Yu, H.A., Arcila, M.E., Rekhtman, N., et al. (2013) Analysis of Tumor Specimens at the Time of Acquired Resistance to EGFR-TKI Therapy in 155 Patients with EGFR-Mutant Lung Cancers. Clinical Cancer Research, 19, 2240-2247.
https://doi.org/10.1158/1078-0432.CCR-12-2246 |
[30] | Tsurutani, J., Iwata, H., Krop, I., et al. (2020) Targeting HER2 with Trastuzumab Deruxtecan: A Dose-Expansion, Phase I Study in Multiple Advanced Solid Tumors. Cancer Discovery, 10, 688-701.
https://doi.org/10.1158/2159-8290.CD-19-1014 |
[31] | Azar, I., Alkassis, S., Fukui, J., et al. (2021) Spotlight on Trastuzumab Deruxtecan (DS-8201, T-DXd) for HER2 Mutation Positive Non-Small Cell Lung Cancer. Lung Cancer (Auckland, N.Z.), 12, 103-114.
https://doi.org/10.2147/LCTT.S307324 |
[32] | Planchard, D., Yang, J.C.H., Brahmer, J.R., Ragone, A., et al. (2021) A Phase Ib Dose-Escalation Study Evaluating Trastuzumab Deruxtecan (T-DXd) and Durvalumab in Combination with Chemotherapy as First-Line Treatment in Patients with Advanced or Metastatic Nonsquamous Non-Small Cell Lung Cancer (NSCLC) and HER2 Overexpression (DESTINY-Lung03). Journal of Thoracic Oncology, 16, S798-S798. https://doi.org/10.1016/S1556-0864(21)02027-X |
[33] | Siena, S., Sartore-Bianchi, A., Marsoni, S., et al. (2018) Targeting the Human Epidermal Growth Factor Receptor 2 (HER2) Oncogene in Colorectal Cancer. Annals of Oncology, 29, 1108-1119. https://doi.org/10.1093/annonc/mdy100 |
[34] | Raghav, K., Loree, J.M., Morris, J.S., et al. (2019) Validation of HER2 Amplification as a Predictive Biomarker for Anti-Epidermal Growth Factor Receptor Antibody Therapy in Metastatic Colorectal Cancer. JCO Precision Oncology, 3, 1-13. https://doi.org/10.1200/PO.18.00226 |
[35] | Ross, J.S., Fakih, M., Ali, S.M., et al. (2018) Targeting HER2 in Colo-rectal Cancer: The Landscape of Amplification and Short Variant Mutations in ERBB2 and ERBB3. Cancer, 124, 1358-1373. https://doi.org/10.1002/cncr.31125 |
[36] | Sartore-Bianchi, A., Amatu, A., Porcu, L., et al. (2019) HER2 Positivity Predicts Unresponsiveness to EGFR-Targeted Treatment in Metastatic Colorectal Cancer. Oncologist, 24, 1395-1402.
https://doi.org/10.1634/theoncologist.2018-0785 |
[37] | Sawada, K., Nakamura, Y., Yamanaka, T., et al. (2018) Prognostic and Predictive Value of HER2 Amplification in Patients with Metastatic Colorectal Cancer. Clinical Colorec-tal Cancer, 17, 198-205.
https://doi.org/10.1016/j.clcc.2018.05.006 |
[38] | Grob, T.J., Kannengiesser, I., Tsourlakis, M.C., et al. (2012) Het-erogeneity of ERBB2 Amplification in Adenocarcinoma, Squamous Cell Carcinoma and Large Cell Undifferentiated Car-cinoma of the Lung. Modern Pathology, 25, 1566-1573. https://doi.org/10.1038/modpathol.2012.125 |
[39] | Marx, A.H., Burandt, E.C., Choschzick, M., et al. (2010) Heterogenous High-Level HER-2 Amplification in a Small Subset of Colorectal Cancers. Human Pathology, 41, 1577-1585. https://doi.org/10.1016/j.humpath.2010.02.018 |
[40] | Shitara, K., Iwata, H., Takahashi, S., et al. (2019) Trastuzumab Deruxtecan (DS-8201a) in Patients with Advanced HER2-Positive Gastric Cancer: A Dose-Expansion, Phase 1 Study. The Lancet Oncology, 20, 827-836.
https://doi.org/10.1016/S1470-2045(19)30088-9 |
[41] | Di Villeneuve, L., Souza, I.L., Tolentino, F.D.S., et al. (2020) Salivary Gland Carcinoma: Novel Targets to Overcome Treatment Resistance in Advanced Disease. Frontiers in Oncol-ogy, 10, Article ID: 580141.
https://doi.org/10.3389/fonc.2020.580141 |
[42] | Nam, A.R., Kim, J.W., Cha, Y., et al. (2016) Therapeutic Implica-tion of HER2 in Advanced Biliary Tract Cancer. Oncotarget, 7, 58007-58021. https://doi.org/10.18632/oncotarget.11157 |
[43] | English, D.P., Roque, D.M. and Santin, A.D. (2013) HER2 Ex-pression beyond Breast Cancer: Therapeutic Implications for Gynecologic Malignancies. Molecular Diagnosis & Thera-py, 17, 85-99.
https://doi.org/10.1007/s40291-013-0024-9 |
[44] | Mariani, A., Sebo, T.J., Katzmann, J.A., et al. (2005) HER-2/Neu Overexpression and Hormone Dependency in Endometrial Cancer: Analysis of Cohort and Review of Literature. Anti-Cancer Research, 25, 2921-2927. |
[45] | Martín-Sabroso, C., Lozza, I., Torres-Suárez, A.I., et al. (2021) Anti-body-Antineoplastic Conjugates in Gynecological Malignancies: Current Status and Future Perspectives. Pharmaceutics, 13, Article No. 1705.
https://doi.org/10.3390/pharmaceutics13101705 |
[46] | Tarantino, P., Modi, S., Tolaney, S.M., et al. (2021) Intersti-tial Lung Disease Induced by Anti-ERBB2 Antibody-Drug Conjugates: A Review. JAMA Oncology, 7, 1873-1881. https://doi.org/10.1001/jamaoncol.2021.3595 |
[47] | Stankowicz, M., Mauro, L., Harnden, K., et al. (2021) Manage-ment of Chemotherapy-Induced Nausea and Vomiting with Trastuzumab Deruxtecan: A Case Series. Breast Care (Basel), 16, 408-411. https://doi.org/10.1159/000511049 |