Brain connectivity is commonly studied in terms of causal interaction or
statistical dependency between brain regions. In this analysis paper, we draw
attention to the constraining effect the dynamics of fiber tract connections
may impose on neuronal signal traffic. We propose a model developed by Copelli
and Kinouchi (l.c.) for a different purpose to safeguard signal transmission
for brain connectivity by ensuring dynamic adaptation of signal reception to a
wide frequency range of traffic flow over connecting fiber tracts. Gap junction
connectivity would confer to neuronal groups the capacity of acting as
collectives for dynamical adaptability to impinging neural traffic thereby
forestalling traffic congestion and overload. It is suggested that applying this
model to signal reception in brain connectivity would deliver the required
functionality as a collective achievement of the interrelations between neurons
and gap junctions, the latter regulated by glia.
References
[1]
Lin, A., Liu, K.K.L., Bartsch, R.P. and Ivanov, P.G. (2020) Dynamic Network Interactions among Distinct Brain Rhythms as a Hallmark of Physiologic State and Function. Communications Biology, 3, Article No. 197.
https://doi.org/10.1038/s42003-020-0878-4
[2]
Sporns, O., Tononi, G. and Edelman, G.M. (2000) Connectivity and Complexity: The Relationship between Neuroanatomy and Brain Dynamics. Neural Networks, 13, 909-922. https://doi.org/10.1016/S0893-6080(00)00053-8
[3]
Sporns, O., Tononi, G. and Edelman, G.M. (2005) The Human Connectome: A Structural Description of the Human Brain. PLOS Computational Biology, 1, e42.
https://doi.org/10.1371/journal.pcbi.0010042
[4]
Bullmore, E. and Sporns, O. (2009) Complex Brain Networks: Graph Theoretical Analysis of Structural and Functional Systems. Nature Reviews Neuroscience, 10, 186-198. https://doi.org/10.1038/nrn2575
[5]
Rubinov, M. and Sporns, O. (2010) Complex Network Measures of Brain Connectivity: Uses and Interpretations. Neurolmage, 52, 1059-1069.
https://doi.org/10.1016/j.neuroimage.2009.10.003
[6]
Bullmore, E., Fadili, J., Maxim, V., Sendur, L., Whitcher, B., Suckling, J., Brammer, M. and Breakspear, M. (2004) Wavelets and Functional Magnetic Resonance Imaging of the Human Brain. Neurolmage, 23, 5234-5249.
https://doi.org/10.1016/j.neuroimage.2004.07.012
[7]
Bullmore, E.T. and Bassett, D.S. (2010) Brain Graphs: Graphical Models of the Human Brain Connectome. Annual Review of Clinical Psychology, 7, 113-140.
https://doi.org/10.1146/annurev-clinpsy-040510-143934
[8]
Friston, K.J. (1994) Functional and Effective Connectivity in Neuroimaging: A Synthesis. Human Brain Mapping, 2, 56-78. https://doi.org/10.1002/hbm.460020107
[9]
Stephan, K.E., Riera, J.J., Deco, G. and Horwitz, B. (2008) The Brain Connectivity workshops: Moving the Frontiers of Computational Systems Neuroscience. Neurolmage, 42, 1-9. https://doi.org/10.1016/j.neuroimage.2008.04.167
[10]
Daunizeau, J., David, O. and Stephan, K.E. (2011) Dynamic Causal Modelling: A Critical Review of the Biophysical and Statistical Foundations. Neurolmage, 58, 312-322. https://doi.org/10.1016/j.neuroimage.2009.11.062
[11]
Horwitz, B. (2003) The Elusive Concept of Brain Connectivity. Neurolmage, 19, 466-470. https://doi.org/10.1016/S1053-8119(03)00112-5
[12]
Rossini, P.M., DiLorio, R., Bentivoglio, M., Bertini, G., et al. (2019) Methods for Analysis of Human Brain Connectivity: An IFCN-Sponsored Review. Clinical Neurophysiology, 130, 1833-1858. https://doi.org/10.1016/j.clinph.2019.06.006
[13]
Hagmann, P., Thiran, J.P., Jonasson, L., Vandergheynst, P., Clarke, S., Maeder, P. and Meuli, R. (2003) DTI Mapping of Human Brain Connectivity: Statistical Fiber Tracking and Virtual Dissection. Neurolmage, 19, 545-554.
https://doi.org/10.1016/S1053-8119(03)00142-3
[14]
Johansen-Berg, H. and Rushworth, M.F.S. (2009) Using Diffusion Imaging to Study Human Connectional Anatomy. Annual Review of Neuroscience, 32, 75-94.
https://doi.org/10.1146/annurev.neuro.051508.135735
[15]
Bassett, D.S., Brown, J.A., Deshpande, V., Carlson, J.M. and Grafton, S.T. (2011) Conserved and Variable Architecture of Human White Matter Connectivity. Neurolmage, 54, 1262-1279. https://doi.org/10.1016/j.neuroimage.2010.09.006
[16]
Hagman, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.L. and Wedeen, V.J. (2008) Mapping the Structural Core of Human Cerebral Cortex. PLOS Biology, 6, e159. https://doi.org/10.1371/journal.pbio.0060159
[17]
Gong, G., He, Y., Concha, L., Lebel, C., Gross, D.W., Evans, A.C. and Beaulieu, C. (2009) Mapping Anatomical Connectivity Patterns of Human Cerebral Cortex Using in Vivo Diffusion Tensor Imaging Tractography. Cerebral Cortex, 19, 524-536.
https://doi.org/10.1093/cercor/bhn102
[18]
Salvador, R., Suckling, J., Schwarzbauer, C. and Bullmore, E. (2005) Undirected Graphs of Frequency-Dependent Functional Connectivity in Whole Brain Networks. Philosophical Transactions of the Royal Society B, 360, 937-946.
https://doi.org/10.1098/rstb.2005.1645
[19]
Young, C.K. and Eggermont, J.J. (2009) Coupling of Mesoscopic Brain Oscillations: Recent Advances in Analytical and Theoretical Perspectives. Progress in Neurobiology, 89, 61-78. https://doi.org/10.1016/j.pneurobio.2009.06.002
Estrada, E., Hatano, N. and Benzi, M. (2012) The Physics of Communicability in Complex Networks. Physics Reports, 514, 89-119.
[22]
Crofts, J.J. and Higman, D.J. (2009) A Weighted Communicability Measure Applied to Complex Brain Networks. Journal of the Royal Society Interface, 6, 411-414.
https://doi.org/10.1098/rsif.2008.0484
[23]
Crofts, J.J., Higman, D.J., Bosnell, R., Jbabdi S., Matthews, P.M., Behrens, T.E.J. and Johansen-Berg, H. (2011) Network Analysis Detects Changes in the Contralesional Hemisphere Following Stroke. Neurolmage, 54, 161-169.
https://doi.org/10.1016/j.neuroimage.2010.08.032
[24]
Singh, B.K. and Gupte, N. (2005) Congestion and Decongestion in a Communication Network. Physical Review E, 71, Article ID: 055103.
https://doi.org/10.1103/PhysRevE.71.055103
[25]
Sreenivasan, S., Cohen, R., Lopez, E., Toroczaki, Z. and Stanley, H.E. (2007.) Structural Bottlenecks for Communication in Networks. Physical Review E, 75, Article ID: 036105. https://doi.org/10.1103/PhysRevE.75.036105
[26]
Danila, B., Yu, Y., Marsh, J.A. and Bassler, K.E. (2007) Transport Optimization on Complex Networks. Chaos, 17, Article ID: 026102.
https://doi.org/10.1063/1.2731718
[27]
Gilbert, A.C. (2005) Dynamics of Congestion Control. In: Kocarev, L. and Vattay, G., Eds., Complex Dynamics in Communication Networks, Understanding Complex Systems, Springer, Berlin, 21-47. https://doi.org/10.1007/10973509_2
[28]
Smith, R.D. (2011) The Dynamics of Internet Traffic: Self-Similarity, Self-Organization and Complex Phenomena. Advances in Complex Systems, 14, 905-949.
[29]
Labovitz, C. (1998) Internet Routing Instability. IEEE/ACM Transactions on Networking, 6, 515-528. https://doi.org/10.1109/90.731185
[30]
Magnasco, M.O. (2006) The Thunder of Distant Net Storms. arXiv:nlin/0010051v1 [nlin.AO]
[31]
Freeman, W.J. (2003) The Wave Packet: An Action Potential for the 21st Century. Journal of Integrative Neuroscience, 2, 3-30.
https://doi.org/10.1142/S0219635203000214
[32]
Simon, A., Olah, S., Molnar, G., Szabadics, J. and Tamás, G. (2005) Gap-Junctional Coupling between Neurogliaform Cells and Various Interneuron Types in the Neocortex. Journal of Neuroscience, 25, 6278-6285.
https://doi.org/10.1523/JNEUROSCI.1431-05.2005
[33]
Fukada, T. and Kosaka, T. (2003) Ultrastructural Study of Gap Junctions between Dendrites of Parvalbumin-Containing GABAergic Neurons in Various Neocortical Areas of the Adult Rat. Neuroscience, 120, 5-20.
https://doi.org/10.1016/S0306-4522(03)00328-2
[34]
Hormuzdi, S.G., Filippov, A., Mitropoulou, G., Monyer, H. and Bruzzone, R. (2004) Electrical Synapses: A Dynamic Signaling System that Shapes the Activity of Neuronal Networks. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1662, 113-137.
https://doi.org/10.1016/j.bbamem.2003.10.023
[35]
Houades, V., Koulakoff, A., Ezan, P., Self, I. and Giaume, C. (2008) Gap Junction-Mediated Astrocytic Networks in the Mouse Barrel Cortex. Journal of Neuroscience, 28, 5107-5217. https://doi.org/10.1523/JNEUROSCI.5100-07.2008
[36]
Araque, A. and Navarrete, M. (2010) Glial Cells in Neuronal Network Function. Philosophical Transactions of the Royal Society B, 365, 2375-2381.
https://doi.org/10.1098/rstb.2009.0313
[37]
Pereira, A. and Furlan, F.A. (2010) Astrocytes and Human Cognition: Modeling Information Integration and Modulation of Neuronal Activity. Progress in Neurobiology, 92, 405-420. https://doi.org/10.1016/j.pneurobio.2010.07.001
[38]
Werner, G. and Mitterauer, B.J. (2013) Neuromodulatory Systems. Frontiers in Neural Circuits, 7, Article 36. https://doi.org/10.3389/fncir.2013.00036
[39]
Lewis, T.J. and Rinzel, J. (2000) Self-Organized Synchronous Oscillations in a Network of Excitable Cells Coupled by Gap Junctions. Network: Computation in Neural Systems, 11, 299-320. https://doi.org/10.1088/0954-898X_11_4_304
[40]
Traub, R.D., Schmitz, D., Jefferys, J.G.R. and Draguhn, A. (1999) High-Frequency Population Oscillations Are Predicted to Occur in Hippocampal Pyramidal Neuronal Networks Interconnected by Axoaxonal Gap Junctions. Neuroscience, 92, 407-426. https://doi.org/10.1016/S0306-4522(98)00755-6
[41]
Goldberg, M., De Pittà, M., Volman, V., Berry, H. and Ben-Jacob, E. (2010) Nonlinear Gap Junctions Enable Long-Distance Propagation of Pulsating Calcium Waves in Astrocyte Networks. PLOS Computational Biology, 6, e1000909.
https://doi.org/10.1371/journal.pcbi.1000909
[42]
Lallouette, J., De Pittà, M. and Berry, H. (2019) Astrocyte Networks and Intercellular Calcium Propagation. In: De Pittà, M. and Berry, H., Eds., Computational Glioscience, Springer Series in Computational Neuroscience, Springer, Cham, 177-210.
https://doi.org/10.1007/978-3-030-00817-8_7
[43]
Durkee, C.A. and Arague, A. (2019) Diversity and Specificity of Astrocyte-Neuron Communication. Neuroscience, 396, 73-78.
https://doi.org/10.1016/j.neuroscience.2018.11.010
[44]
Arizono. M., Inavalli, G.K., Panatier, A., Pfeiffer, T., et al. (2020) Structural Basis of Astrocytic Ca2+ Signals at Tripartite Synapses. Nature Communications, 11, Article No. 1906. https://doi.org/10.1038/s41467-020-15648-4
[45]
Semyanov, A. and Verkhratsky, A. (2021) Astrocytic Processes: From Tripartite Synapses to the Active Milieu. Trendsin Neurosciences, 44, 781-792.
https://doi.org/10.1016/j.tins.2021.07.006
[46]
Copelli, M., Roque, A.C., Oliveira, R.F. and Kinouchi, O. (2002) Physics of Psychophysics: Stevens and Weber-Fechner Laws Are Transfer Functions of Excitable Media. Physical Review E, 65, Article ID: 060901(R).
https://doi.org/10.1103/PhysRevE.65.060901
[47]
Copelli, M. and Kinouchi, O. (2005) Intensity Coding in Two-Dimensional Excitable Neural Networks. Physical A: Statistical Mechanics and Its Applications, 349, 431-442. https://doi.org/10.1016/j.physa.2004.10.043
[48]
Kinouchi, O. and Copelli, M. (2006) Optimal Dynamical Range of Excitable Networks at Criticality. Nature Physics, 2, 348-352. https://doi.org/10.1038/nphys289
[49]
Greenberg, J.M. and Hastings, S.P. (1978) Spatial Patterns for Discrete Models of Diffusion in Excitable Media. SIAM Journal on Applied Mathematics, 34, 515-523.
https://doi.org/10.1137/0134040
[50]
Copelli, M. and Campos, P.R.A. (2007) Excitable Scale Free Networks. The European Physical Journal B, 56, 273-278. https://doi.org/10.1140/epjb/e2007-00114-7