|
应用迁移学习的提高小数据集蝴蝶种类识别精确度的方法
|
Abstract:
野生蝴蝶品种繁多、分布广泛,且其对于生存环境的变化较为敏感,监测范围内的蝴蝶种群生存情况,可以为监测衡量该地区生态环境变化和衡量生态环境的质量提供帮助。现有的蝴蝶种类数据集大多数据量较小,识别的准确率较低。针对该问题,本文提出了基于VGG16模型的迁移学习及微调方法,对蝴蝶图像进行种类识别,以提高识别准确率。首先对蝴蝶种类数据集进行数据增强,再利用大型图像数据集对VGG16模型进行预训练,对预训练模型进行参数迁移,对卷积层和池化层进行“冻结”,修改全连接层和分类层,再“解冻”部分卷积层对参数进行微调,得到识别结果。实验证明:通过迁移学习加微调的方法,该网络对于蝴蝶种类识别的准确率得到有效提高,识别准确率从最初的76.67%,在迁移及微调后达到83.95%。
There are many species and wide distribution of wild butterflies, and they are sensitive to changes in the living environment. The survival of butterfly populations within the monitoring range can provide help for monitoring and measuring changes in the ecological environment in the region and measuring the quality of the ecological environment. Most of the existing butterfly species data sets have small data volume and low recognition accuracy. In order to solve this problem, this paper proposes a migration learning and fine-tuning method based on the VGG16 model to recognize the butterfly image in order to improve the recognition accuracy. First, the butterfly species data set is enhanced, and then the large image data set is used to pre-train the VGG16 model, migrate the parameters of the pre-training model, “freeze” the convolution layer and pool layer, modify the full connection layer and classification layer, and “thaw” part of the convolution layer to fine-tune the parameters to get the recognition results. The experiment shows that the accuracy of the network for butterfly species recognition has been effectively improved by the method of migration learning and fine tuning, and the recognition accuracy has reached 83.95% after migration and fine tuning from 76.67% at the beginning.
[1] | Espeland, M., Breinholt, J., Willmott, K.R., et al. (2018) A Comprehensive and Dated Phylogenomic Analysis of Butterflies. Current Biology, 28, 770-778. https://doi.org/10.1016/j.cub.2018.01.061 |
[2] | 张建伟. 基于计算机视觉技术的蝴蝶自动识别研究[D]: [博士学位论文]. 北京: 中国农业大学, 2006. |
[3] | 刘芳, 沈佐锐, 张建伟, 杨红珍. 基于颜色特征的昆虫自动鉴定方法[J]. 昆虫知识, 2008, 45(1): 150-153. |
[4] | Kang, S.H., Cho, J.H. and Lee, S.H. (2014) Identification of Butterfly Based on Their Shapes When Viewed from Different Angles Using an Artificial Neural Network. Journal of Asia-Pacific Entomology, 17, 143-149.
https://doi.org/10.1016/j.aspen.2013.12.004 |
[5] | Kaya, Y., Kayci, L. and Tekin, R. (2013) A Computer Vision System for the Automatic Identification of Butterfly Species via Gabor- Filter-Based Texture Features and Extreme Learning Machine: GF+ELM. Tem Journal, 2, 13-20. |
[6] | Kaya, Y. and Kayci, L. (2014) Application of Artificial Neural Network for Automatic Detection of Butterfly Species Using Color and Texture Features. Visual Computer, 30, 71-79. https://doi.org/10.1007/s00371-013-0782-8 |
[7] | Kaya, Y., Kayci, L. and Uyar, M. (2015) Automatic Identification of Butterfly Species Based on Local Binary Patterns and Artificial Neural Network. Applied Soft Computing, 28, 132-137. https://doi.org/10.1016/j.asoc.2014.11.046 |
[8] | 谢娟英, 侯琦, 史颖欢, 吕鹏, 景丽萍, 庄福振, 张军平, 谭晓阳, 许升全. 蝴蝶种类自动识别研究[J]. 计算机研究与发展, 2018, 55(8): 1609-1618. |
[9] | 谢娟英, 鲁银圆, 孔维轩, 许升全. 基于改进RetinaNet的自然环境中蝴蝶种类识别[J]. 计算机研究与发展, 2021, 58(8): 1686-1704. |
[10] | 周文进, 李凡, 薛峰. 基于YOLOv3和注意力机制的野外蝴蝶种类识别[J]. 郑州大学学报(工学版), 2022, 43(1): 34-40. https://doi.org/10.13705/j.issn.1671-6833.2022.01.007 |
[11] | Simonyan, K. and Zisserman, A. (2014) Very Deep Convolutional Networks for Large-Scale Image Recognition.
https://arxiv.org/abs/1409.1556 |
[12] | Oquab, M., Bottou, L., Laptev, I. and Sivic, J. (2014) Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23-28 June 2014. https://doi.org/10.1109/CVPR.2014.222 |
[13] | 孟伟, 袁艺琳. 迁移学习应用于新型冠状病毒肺炎诊断综述[J]. 计算机科学与探索, 2023, 17(3): 561-576. |
[14] | 邵良玉. 基于迁移学习的花类图像分类方法研究[J]. 农业装备与车辆工程, 2022, 60(7): 62-99. |
[15] | 马睿, 王佳, 赵威, 郭宏杰, 马德新, 兰进好. 基于卷积神经网络与迁移学习的玉米籽粒图像分类识别[J/OL]. 中国粮油学报: 1-10. https://kns.cnki.net/kcms/detail/11.2864.TS.20220803.1310.010.html, 2023-04-21. |