全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有Beddington-DeAngelis型功能反应的离散捕食者–食饵系统的动力学行为
Dynamical Behavior of Discrete Predator-Prey System with Beddington-Deangelis Functional Response

DOI: 10.12677/AAM.2023.124189, PP. 1824-1837

Keywords: 离散捕食者–食饵系统,Beddington-DeAngelis型功能反应函数,稳定性和分支分析
Discrete-Time Predator-Prey System
, Beddington-Deangelis Functional Response, Stability and Bi-furcation Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

在本文中,我们提出了一个离散的具有Beddington-DeAngelis型功能反应的捕食者–食饵系统。研究了该模型不动点的稳定性。同时,利用分支理论和近似流的方法,证明了离散模型经历了折分支和翻转分支。数值模拟不仅证明了我们的理论分析的一致性,而且还展示了复杂的动力学行为,如周期为2的倍周期分支级联和混沌集。数值计算了最大李雅普诺夫指数,进一步证实了动力学行为的复杂性。结果表明,离散模型比连续模型具有更丰富的动力学特性。
In this paper, we propose a discrete Beddington-DeAngelis predator-prey system. The stability of the fixed points of this model is studied. At the same time, it is shown that the discrete model un-dergoes fold bifurcation and flips bifurcation by using bifurcation theory and the method of ap-proximation by a flow. Numerical simulation are presented not only to demonstrate the consistence with our theoretical analyses, but also to exhibit the complex dynamical behaviors, such as the cas-cade of period-doubling bifurcation in period-2 and the chaotic sets. The Maximum Lyapunov expo-nents are numerically computed to confirm further the complexity of the dynamical behaviors. These results show that the discrete model has more rich dynamic behaviors than the continuous model.

References

[1]  Sohel Rana, S.M. (2015) Bifurcation and Complex Dynamics of a Discrete-Time Predator-Prey System. Computational Ecology and Software, 5, 187-200.
[2]  Beddington, J.R. (1975) Multual Interference between Parasites or Predators and Its Effect on Searching Efficiency. Journal of Animal Ecology, 44, 331-340.
https://doi.org/10.2307/3866
[3]  DeAngelis, D.L., Goldstein, R.A. and O’Neill, R.V. (1975) A Model for Trophic Interaction. Ecology, 56, 881-892.
https://doi.org/10.2307/1936298
[4]  Cantrell, R.S. and Cosner, C. (2001) On the Dynamics of Predator-Prey Models with the Beddingon-DeAngelis Functional Response. Journal of Mathematical Analysis and Applications, 257, 206-222.
https://doi.org/10.1006/jmaa.2000.7343
[5]  Hwang, T.W. (2003) Global Analysis of the Predator-Prey System with Beddington-DeAngelis Functional Response. Journal of Mathematical Analysis and Applications, 281, 395-401.
https://doi.org/10.1016/S0022-247X(02)00395-5
[6]  Hwang, T.W. (2004) Uniqueness of Limit Cycles of the Predator-Prey System with Beddington-DeAngelis Functional Response. Journal of Mathematical Analysis and Applica-tions, 290, 113-122.
https://doi.org/10.1016/j.jmaa.2003.09.073
[7]  沈怡心, 蒲志林, 胡华书. 一类具有Beddington-DeAngelis型功能反应的非自治捕食-被捕食系统的渐近行为[J]. 四川师范大学学报: 自然科学版, 2019, 42(3), 312-317.
[8]  Zhang, Y.Y. and Huang, J.C. (2022) Bifurcation Analysis of a Predator-Prey Model with Bedding-ton-DeAngelis Functional Response and Predator Competition, Math. Mathematical Methods in the Applied Sciences, 45, 9894-9927.
https://doi.org/10.1002/mma.8345
[9]  Liu, X.L. and Xiao, D.M. (2006) Bifurcations in a Discrete Time Lot-ka-Volterra Predator-Prey System. Discrete and Continuous Dynamical Systems—Series B, 6, 559-572.
https://doi.org/10.3934/dcdsb.2006.6.559
[10]  Yuan, L.G. and Yang, Q.G. (2015) Bifurcation, Invariant Curve and Hybrid Control in a Discrete-Time Predator—Prey System. Applied Mathematical Modelling, 39, 2345-2362.
https://doi.org/10.1016/j.apm.2014.10.040
[11]  Kuznetsov, Y. (1998) Elements of Applied Bifurcation Theory. Applied Mathematical Sciences. 2nd Edition, Springer-Verlag, New York, 112.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133