|
一类色散半群的基本估计
|
Abstract:
本文通过Zhang得到的估计振荡积分方法研究了色散半群 F?1ei[xξ+(ξn+ξ)t]F 在n 为奇数且有界时
的一维衰减估计问题, 展示了该振荡积分估计方法在研究半群衰减问题中的重要性.
In this paper, we study the problem of one-dimensional attenuation estimation of dis-persion semigroups F?1ei[xξ+(ξn+ξ)t]F when n is odd and bounded by using the estimated oscillatory integration method obtained by Zhang. The importance of the estimated oscillatory integration method in the study of semigroup attenuation is demonstrated.
[1] | Strichartz, R.S. (1977) Restrictions of Fourier Transforms to Quadratic Surfaces and Decay of Solutions of Wave Equations. Duke Mathematical Journal, 44, 705-714. https://doi.org/10.1215/S0012-7094-77-04430-1 |
[2] | Ben-Artzi, M. and Treves, F. (1994) Uniform Estimates for a Class of Evolution Equations. Journal of Functional Analysis, 120, 264-299. https://doi.org/10.1006/jfan.1994.1033 |
[3] | Ben-Artzi, M. and Saut, J.-C. (1999) Uniform Decay Estimates for a Class of Oscillatory Integrals and Applications. Differential Integral Equations, 12, 137-145. https://doi.org/10.57262/die/1367265625 |
[4] | Cui, S. and Tao, S. (2005) Strichartz Estimates for Dispersive Equations and Solvability of the Kawahara Equation. Journal of Mathematical Analysis and Applications, 304, 683-702. https://doi.org/10.1016/j.jmaa.2004.09.049 |
[5] | Kenig, C.E., Ponce, G. and Vega, L. (1991) Oscillatory Integrals and Regularity of Dispersive Equations. Indiana University Mathematics Journal, 40, 33-69. https://doi.org/10.1512/iumj.1991.40.40003 |
[6] | Kenig, C.E., Ponce, G. and Vega, L. (1989) On the (Generalized) Korteweg-de Vries Equations. Duke Mathematical Journal, 59, 585-610. https://doi.org/10.1215/S0012-7094-89-05927-9 |
[7] | Wang, B., Huo, Z., Hao, C. and Guo, Z. (2011) Harmonic Analysis Method for Nonlinear Evolution Equations, I. World Scientific, Singapore, Hackensack, NJ. https://doi.org/10.1142/8209 |
[8] | Basu, S., Guo, S., Zhang, R. and Zorin-Kranich, P. (2021) A Stationary Set Method for Estimating Oscillatory Integrals. arXiv preprint arXiv:2103.08844 |