全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

丁香有效成分在抗肿瘤方面的研究进展
Research Progress on Antitumor Effects of Active Components of Clove

DOI: 10.12677/ACM.2023.134955, PP. 6826-6834

Keywords: 丁香,丁香酚,抗肿瘤
Clove
, Eugenol, Antitumor

Full-Text   Cite this paper   Add to My Lib

Abstract:

丁香为桃金娘科植物丁香的干燥花蕾,有抗炎、抗氧化、抗菌、杀虫、镇痛和抗肿瘤等多种生物学活性,然而中药丁香作为一种香料,显示出对机体绿色和无毒副作用的效果,更是现代肿瘤研究的热点药物之一,因此丁香作为新的抗肿瘤的药物有着非常高的潜在的研究价值,丁香及丁香有效成分对乳腺癌、结直肠癌、黑色素瘤、宫颈癌、胃癌和肺癌等有着明显的抗肿瘤作用,研究表明,丁香及丁香有效成分可以通过多种途径直接或间接抑制肿瘤细胞生长和诱导着肿瘤细胞的凋亡。本文综述了近几年来国内外文献,对丁香及丁香有效成分的抗肿瘤作用进行了综述。
Clove is the dried flower bud of myrtiaceae plant clove, which has various biological activities such as anti-inflammatory, antioxidant, antibacterial, insecticidal, analgesic and anti-tumor. However, as a kind of fragrance, clove, a traditional Chinese medicine, has shown its green effect and non-toxic side effects on the body, and is one of the hot drugs in modern tumor research. Therefore, as a new anti-tumor drug, clove has very high potential research value. Clove and its active components have obvious anti-tumor effects on breast cancer, colorectal cancer, melanoma, cervical cancer, gastric cancer and lung cancer, etc. Studies have shown that clove and its active components can directly or indirectly inhibit the growth of tumor cells and induce the apoptosis of tumor cells through a varie-ty of ways. This paper reviews the literature at home and abroad in recent years, and reviews the antitumor effects of clove and its active components.

References

[1]  Cao, W., Chen, H.D., Yu, Y.W., et al. (2021) Changing Profiles of Cancer Burden Worldwide and in China: A Second-ary Analysis of the Global Cancer Statistics 2020. Chinese Medical Journal (England), 134, 783-791.
https://doi.org/10.1097/CM9.0000000000001474
[2]  Xia, C., Dong, X., Li, H., et al. (2022) Cancer Statistics in China and United States, 2022: Profiles, Trends, and Determinants. Chinese Medical Journal (England), 135, 584-590.
https://doi.org/10.1097/CM9.0000000000002108
[3]  金斗镇. 中医对胰腺癌的认识和治疗方法[J]. 黑龙江中医药, 2006(5): 57-59.
[4]  Hsiao, W.L. and Liu, L. (2010) The Role of Traditional Chinese Herbal Medicines in Cancer Therapy—From TCM Theory to Mechanistic Insights. Planta Medica, 76, 1118-1131.
https://doi.org/10.1055/s-0030-1250186
[5]  Qi, F., Zhao, L., Zhou, A., et al. (2015) The Advantages of Using Traditional Chinese Medicine as an Adjunctive Therapy in the Whole Course of Cancer Treatment Instead of Only Ter-minal Stage of Cancer. BioScience Trends, 9, 16-34.
https://doi.org/10.5582/bst.2015.01019
[6]  Hui, Q., Ammeter, E., Liu, S., et al. (2020) Eugenol Attenuates Inflammatory Response and Enhances Barrier Function during Lipopoly-saccharide-Induced Inflammation in the Porcine Intestinal Epithelial Cells. Journal of Animal Science, 98, skaa245.
https://doi.org/10.1093/jas/skaa245
[7]  De Oliveira, A.S., Gazolla, P.A.R., Oliveira, A., et al. (2019) Discovery of Novel West Nile Virus Protease Inhibitor Based on Isobenzonafuranone and Triazolic Derivatives of Eugenol and In-dan-1,3-Dione Scaffolds. PLOS ONE, 14, e0223017.
https://doi.org/10.1371/journal.pone.0223017
[8]  Hu, Q., Zhou, M. and Wei, S. (2018) Progress on the Antimicrobial Activity Research of Clove Oil and Eugenol in the Food An-tisepsis Field. Journal of Food Science, 83, 1476-1483.
https://doi.org/10.1111/1750-3841.14180
[9]  Osanloo, M., Sedaghat, M.M., Esmaeili, F., et al. (2018) Larvicidal Activity of Essential Oil of Syzygium aromaticum (Clove) in Comparison with Its Major Constituent, Eugenol, against Anopheles stephensi. Journal of Arthropod-Borne Diseases, 12, 361-369.
https://doi.org/10.18502/jad.v12i4.354
[10]  Barboza, J.N., Silva, R.O., et al. (2018) An Overview on the Anti-Inflammatory Potential and Antioxidant Profile of Eugenol. Oxidative Medicine and Cellular Longevity, 2018, Arti-cle ID: 3957262.
https://doi.org/10.1155/2018/3957262
[11]  Taher, Y.A., Samud, A.M., El-Taher, F.E., et al. (2015) Experimental Evaluation of Anti-Inflammatory, Antinociceptive and Antipyretic Activities of Clove Oil in Mice. Libyan Journal of Medicine, 10, Article No. 28685.
https://doi.org/10.3402/ljm.v10.28685
[12]  Liu, H., Schmitz, J.C., Wei, J., et al. (2014) Clove Extract Inhibits Tu-mor Growth and Promotes Cell Cycle Arrest and Apoptosis. Oncology Research, 21, 247-259.
https://doi.org/10.3727/096504014X13946388748910
[13]  Cortés-Rojas, D.F., De Souza, C.R.F. and Oliveira, W.P. (2014) Clove (Syzygium aromaticum): A Precious Spice. Asian Pacific Journal of Tropical Biomedicine, 4, 90-96.
https://doi.org/10.1016/S2221-1691(14)60215-X
[14]  Bezerra, D.P., Militao, G.C.G., De Morais, M.C., et al. (2017) The Dual Antioxidant/Prooxidant Effect of Eugenol and Its Action in Cancer Development and Treatment. Nutri-ents, 9, 1367.
https://doi.org/10.3390/nu9121367
[15]  Kammath, A.J., Nair, B., et al. (2021) Curry versus Cancer: Potential of Some Selected Culinary Spices against Cancer with in Vitro, in Vivo, and Human Trials Evidences. Journal of Food Biochemistry, 45, e13285.
https://doi.org/10.1111/jfbc.13285
[16]  Zari, A.T., Zari, T.A. and Hakeem, K.R. (2021) Anticancer Properties of Eugenol: A Review. Molecules, 26, 7407.
https://doi.org/10.3390/molecules26237407
[17]  Global Burden of Disease Cancer C, Fitzmaurice, C., Abate, D., et al. (2019) Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncology, 5, 1749- 1768.
https://doi.org/10.1001/jamaoncol.2019.2996
[18]  Winters, S., Martin, C., Murphy, D., et al. (2017) Breast Cancer Epidemiology, Prevention, and Screening. Progress in Molecular Biology and Translational Science, 151, 1-32.
https://doi.org/10.1016/bs.pmbts.2017.07.002
[19]  Kumar, P.S., Febriyanti, R.M., Sofyan, F.F., et al. (2014) Anticancer Potential of Syzygium aromaticum L. in MCF-7 Human Breast Cancer Cell Lines. Pharmacognosy Research, 6, 350-354.
https://doi.org/10.4103/0974-8490.138291
[20]  Kello, M., Takac, P., Kubatka, P., et al. (2020) Oxidative Stress-Induced DNA Damage and Apoptosis in Clove Buds- Treated MCF-7 Cells. Biomolecules, 10, 139.
https://doi.org/10.3390/biom10010139
[21]  Ma, M., Ma, Y., Zhang, G.-J., et al. (2017) Eugenol Alleviated Breast Precancerous Lesions through HER2/PI3K-AKT Pathway-Induced Cell Apoptosis and S-Phase Arrest. Oncotarget, 8, 56296-56310.
https://doi.org/10.18632/oncotarget.17626
[22]  Kubatka, P., Uramova, S., Kello, M., et al. (2017) Antineoplastic Effects of Clove Buds (Syzygium aromaticum L.) in the Model of Breast Carcinoma. Journal of Cellular and Molecular Medicine, 21, 2837-2851.
https://doi.org/10.1111/jcmm.13197
[23]  Al-Sharif, I., Remmal, A. and Aboussekhra, A. (2013) Eugenol Triggers Apoptosis In Breast Cancer Cells through E2F1/ Survivin Down-Regulation. BMC Cancer, 13, Article No. 600.
https://doi.org/10.1186/1471-2407-13-600
[24]  Abdullah, M.L., Al-Shabanah, O., Hassan, Z.K., et al. (2021) Eu-genol-Induced Autophagy and Apoptosis in Breast Cancer Cells via PI3K/AKT/FOXO3a Pathway Inhibition. Interna-tional Journal of Molecular Sciences, 22, 9243.
https://doi.org/10.3390/ijms22179243
[25]  Abdullah, M.L., Hafez, M.M., Al-Hoshani, A., et al. (2018) An-ti-Metastatic and Anti-Proliferative Activity of Eugenol against Triple Negative and HER2 Positive Breast Cancer Cells. BMC Complementary and Alternative Medicine, 18, 321.
https://doi.org/10.1186/s12906-018-2392-5
[26]  Khan, F.A., Akhtar, S., Almohazey, D., et al. (2018) Extracts of Clove (Syzygium aromaticum) Potentiate FMSP-Nano- parti-cles Induced Cell Death in MCF-7 Cells. International Journal of Biomaterials, 2018, Article ID: 8479439.
https://doi.org/10.1155/2018/8479439
[27]  Li, J., Ma, X., Chakravarti, D., et al. (2021) Genetic and Biological Hallmarks of Colorectal Cancer. Genes & Development, 35, 787-820.
https://doi.org/10.1101/gad.348226.120
[28]  Dekker, E., Tanis, P.J., Vleugels, J., et al. (2019) Colorectal Cancer. The Lancet, 394, 1467-1480.
https://doi.org/10.1016/S0140-6736(19)32319-0
[29]  Slamenova, D., Horvathova, E., Wsolova, L., et al. (2009) Investigation of Anti-Oxidative, Cytotoxic, DNA-Damaging and DNA-Protective Effects of Plant Volatiles Eugenol and Borneol in Human-Derived HepG2, Caco-2 and VH10 Cell Lines. Mutation Research, 677, 46-52.
https://doi.org/10.1016/j.mrgentox.2009.05.016
[30]  Li, C., Xu, H., Chen, X., et al. (2019) Aqueous Extract of Clove Inhibits Tumor Growth by Inducing Autophagy through AMPK/ULK Pathway. Phytotherapy Research, 33, 1794-1804.
https://doi.org/10.1002/ptr.6367
[31]  El-Garawani, I.M., El-Nabi, S.H., Dawoud, G.T., et al. (2019) Triggering of Apoptosis and Cell Cycle Arrest by Fennel and Clove Oils in Caco-2 Cells: The Role of Combination. Toxicology Mechanisms and Methods, 29, 710-722.
https://doi.org/10.1080/15376516.2019.1650149
[32]  Jaganathan, S.K., Mazumdar, A., Mondhe, D., et al. (2011) Apoptotic Effect of Eugenol in Human Colon Cancer Cell Lines. Cell Biology International, 35, 607-615.
https://doi.org/10.1042/CBI20100118
[33]  Liu, M., Zhao, G., Zhang, D., et al. (2018) Active Fraction of Clove Induces Apoptosis via PI3K/Akt/mTOR-Mediated Autophagy in Human Colorectal Cancer HCT-116 Cells. Internation-al Journal of Oncology, 53, 1363-1373.
https://doi.org/10.3892/ijo.2018.4465
[34]  Ribeiro Moura Brasil Arnaut, J., Dos Santos Guimaraes, I., Evangelista Dos Santos, A.C., et al. (2021) Molecular Landscape of Hereditary Melanoma. Critical Reviews in Oncolo-gy/Hematology, 164, Article ID: 103425.
https://doi.org/10.1016/j.critrevonc.2021.103425
[35]  Ghosh, R., Nadiminty, N., Fitzpatrick, J.E., et al. (2005) Eu-genol Causes Melanoma Growth Suppression through Inhibition of E2F1 Transcriptional Activity. Journal of Biological Chemistry, 280, 5812-5819.
https://doi.org/10.1074/jbc.M411429200
[36]  Junior, P.L., Camara, D.A., Costa, A.S., et al. (2016) Apoptotic Ef-fect of Eugenol Envolves G2/M Phase Abrogation Accompanied by Mitochondrial Damage and Clastogenic Effect on Cancer Cell in Vitro. Phytomedicine, 23, 725-735.
https://doi.org/10.1016/j.phymed.2016.03.014
[37]  Pisano, M., Pagnan, G., Loi, M., et al. (2007) Antiproliferative and Pro-Apoptotic Activity of Eugenol-Related Biphenyls on Malignant Melanoma Cells. Molecular Cancer, 6, 8.
https://doi.org/10.1186/1476-4598-6-8
[38]  Buskwofie, A., David-West, G. and Clare, C.A. (2020) A Review of Cervical Cancer: Incidence and Disparities. Journal of the National Medical Association, 112, 229-232.
https://doi.org/10.1016/j.jnma.2020.03.002
[39]  Revathidevi, S., Murugan, A.K., Nakaoka, H., et al. (2021) APOBEC: A Molecular Driver in Cervical Cancer Pathogenesis. Cancer Letters, 496, 104-116.
https://doi.org/10.1016/j.canlet.2020.10.004
[40]  Das, A., et al. (2018) Evaluation of Therapeutic Potential of Eu-genol-A Natural Derivative of Syzygium aromaticum on Cervical Cancer. Asian Pacific Journal of Cancer Prevention, 19, 1977-1985.
[41]  Hussain, A., Brahmbhatt, K., Priyani, A., et al. (2011) Eugenol Enhances the Chemotherapeutic Poten-tial of Gemcitabine and Induces Anticarcinogenic and Anti-Inflammatory Activity in Human Cervical Cancer Cells. Can-cer Biotherapy and Radiopharmaceuticals, 26, 519-527.
https://doi.org/10.1089/cbr.2010.0925
[42]  Fathy, M., Fawzy, M.A., Hintzsche, H., et al. (2019) Eugenol Exerts Apoptotic Effect and Modulates the Sensitivity of HeLa Cells to Cisplatin and Radiation. Molecules, 24, 3979.
https://doi.org/10.3390/molecules24213979
[43]  Pal, D., Sur, S., Roy, R., et al. (2019) Epigallocatechin Gallate in Combination with Eugenol or Amarogentin Shows Synergistic Chemo-therapeutic Potential in Cervical Cancer Cell Line. Journal of Cellular Physiology, 234, 825-836.
https://doi.org/10.1002/jcp.26900
[44]  Smyth, E.C., Nilsson, M., Grabsch, H.I., et al. (2020) Gastric Cancer. The Lancet, 396, 635-648.
https://doi.org/10.1016/S0140-6736(20)31288-5
[45]  Machlowska, J., Baj, J., Sitarz, M., et al. (2020) Gastric Cancer: Epidemiology, Risk Factors, Classification, Genomic Characteristics and Treatment Strategies. International Journal of Molecular Sciences, 21, 4012.
https://doi.org/10.3390/ijms21114012
[46]  Sarkar, A., Das, S., Rahaman, A., et al. (2020) Eugenol and Capsaicin Exhibit Anti-Metastatic Activity via Modulating TGF-Beta Signaling in Gastric Carcinoma. Food and Function, 11, 9020-9034.
https://doi.org/10.1039/D0FO00887G
[47]  Manikandan, P., Murugan, R.S., Priyadarsini, R.V., et al. (2010) Eugenol Induces Apoptosis and Inhibits Invasion and Angiogenesis in a Rat Model of Gastric Carcinogenesis Induced by MNNG. Life Sciences, 86, 936-941.
https://doi.org/10.1016/j.lfs.2010.04.010
[48]  Schabath, M.B. and Cote, M.L. (2019) Cancer Progress and Priori-ties: Lung Cancer. Cancer Epidemiology, Biomarkers & Prevention, 28, 1563-1579.
https://doi.org/10.1158/1055-9965.EPI-19-0221
[49]  Banerjee, S., Panda, C.K. and Das, S. (2006) Clove (Syzygi-um aromaticum L.), a Potential Chemopreventive Agent for Lung Cancer. Carcinogenesis, 27, 1645-1654.
https://doi.org/10.1093/carcin/bgi372
[50]  Li, F.J. and Yang, Z.J. (2018) Tumor Suppressive Roles of Eugenol in Human Lung Cancer Cells. Thoracic Cancer, 9, 25-29.
https://doi.org/10.1111/1759-7714.12508
[51]  Cui, Z., Liu, Z., Zeng, J., et al. (2019) Eugenol Inhibits Non-Small Cell Lung Cancer by Repressing Expression of NF-kappaB-Regulated TRIM59. Phytotherapy Research, 33, 1562-1569.
https://doi.org/10.1002/ptr.6352
[52]  Choudhury, P., Barua, A., Roy, A., et al. (2021) Eugenol Emerges as an Elixir by Targeting Beta-Catenin, the Central Cancer Stem Cell Regulator in Lung Carcinogenesis: An in Vivo and in Vitro Rationale. Food and Function, 12, 1063- 1078.
https://doi.org/10.1039/D0FO02105A
[53]  Whiteley, A.E., Price, T.T., Cantelli, G., et al. (2021) Leukaemia: A Model Metastatic Disease. Nature Reviews Cancer, 21, 461-475.
https://doi.org/10.1038/s41568-021-00355-z
[54]  Yoo, C.B., Han, K.T., Cho, K.S., et al. (2005) Eugenol Isolated from the Essential Oil of Eugenia caryophyllata Induces a Reactive Oxygen Species-Mediated Apoptosis in HL-60 Hu-man Promyelocytic Leukemia Cells. Cancer Letters, 225, 41-52.
https://doi.org/10.1016/j.canlet.2004.11.018
[55]  Park, B., Song, Y., Yee, S.-B., et al. (2005) Phospho-ser 15-p53 Translocates into Mitochondria and Interacts with Bcl-2 and Bcl-xL in Eugenol-Induced Apoptosis. Apoptosis, 10, 193-200.
https://doi.org/10.1007/s10495-005-6074-7
[56]  Nam, H. and Kim, M.M. (2013) Eugenol with Antioxi-dant Activity Inhibits MMP-9 Related to Metastasis in Human Fibrosarcoma Cells. Food and Chemical Toxicology, 55, 106-112.
https://doi.org/10.1016/j.fct.2012.12.050
[57]  Liang, W.Z., Chou, C.T., Hsu, S.S., et al. (2015) The In-volvement of Mitochondrial Apoptotic Pathway in Eugenol-Induced Cell Death in Human Glioblastoma Cells. Toxicolo-gy Letters, 232, 122-132.
https://doi.org/10.1016/j.toxlet.2014.10.023
[58]  Sun, X., Veeraraghavan, V.P., Surapaneni, K.M., et al. (2021) Eugenol-Piperine Loaded Polyhydroxy Butyrate/Poly- ethylene Glycol Nanocomposite-Induced Apoptosis and Cell Death in Nasopharyngeal Cancer (C666-1) Cells through the Inhibition of the PI3K/AKT/mTOR Signaling Pathway. Journal of Biochemical and Molecular Toxicology, 35, e22700.
https://doi.org/10.1002/jbt.22700
[59]  Ghosh, R., Ganapathy, M., Alworth, W.L., et al. (2009) Combination of 2-Methoxyestradiol (2-ME2) and Eugenol for Apoptosis Induction Synergistically in Androgen Independent Prostate Cancer Cells. The Journal of Steroid Biochemistry and Molecular Biology, 113, 25-35.
https://doi.org/10.1016/j.jsbmb.2008.11.002
[60]  Islam, S.S. and Aboussekhra, A. (2019) Sequential Combination of Cisplatin with Eugenol Targets Ovarian Cancer Stem Cells through the Notch-Hes1 Signalling Pathway. Journal of Experimental & Clinical Cancer Research, 38, 382.
https://doi.org/10.1186/s13046-019-1360-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133