全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

放射组学在呼吸系统疾病中的应用
Application of Radiomics in Respiratory Dis-eases

DOI: 10.12677/ACM.2023.134950, PP. 6793-6797

Keywords: 放射组学,肺癌,肺结核,呼吸系统疾病
Adiomics
, Lung Cancer, Pulmonary Tuberculosis, Respiratory Diseases

Full-Text   Cite this paper   Add to My Lib

Abstract:

放射组学是一门新兴的科学,通过特殊的软件算法从大量放射图像中挖掘并量化影像学特征,在癌症疗效评价、诊断和预后预测模型建立、实现个体化和精准医疗等方面具有重要意义,已经被运用到许多疾病的研究,尤其是呼吸系统疾病中,本文将对放射组在呼吸系统常见疾病中的应用进行综述。
Radiomics is an emerging science, which uses special software algorithms to dig and quantify imag-ing features from a large number of radiation images. It is of great significance in the evaluation of cancer efficacy, the establishment of diagnosis and prognostic prediction models, the realization of individualized and precision medicine, and has been applied to the research of many diseases, es-pecially respiratory diseases. This article will review the application of radiation group in common respiratory diseases.

References

[1]  Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., et al. (2012) Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. European Journal of Cancer, 48, 441-446.
https://doi.org/10.1016/j.ejca.2011.11.036
[2]  Gillies, R.J., Kinahan, P.E. and Hricak, H. (2016) Radiomics: Im-ages Are More than Pictures, They Are Data. Radiology, 278, 563-577.
https://doi.org/10.1148/radiol.2015151169
[3]  Chen, C.H., Chang, C.K., Tu, C.Y., et al. (2018) Radiomic Fea-tures Analysis in Computed Tomography Images of Lung Nodule Classification. PLOS ONE, 13, e0192002.
https://doi.org/10.1371/journal.pone.0192002
[4]  Chen, B., Zhang, R., Gan, Y., et al. (2017) Development and Clinical Application of Radiomics in Lung Cancer. Radiation Oncology, 12, 154.
https://doi.org/10.1186/s13014-017-0885-x
[5]  Weiss, G.J., Ganeshan, B., Miles, K.A., et al. (2023) Noninvasive Image Texture Analysis Differentiates K-Ras Mutation from Pan-Wild Type NSCLC and Is Prognostic. PLOS ONE, 7, e100244.
https://doi.org/10.1371/journal.pone.0100244
[6]  Yoon, H.J., Sohn, I., Cho, J.H., et al. (2015) Decoding Tumor Phenotypes for ALK, ROS1, and RET Fusions in Lung Adenocarcinoma Using a Radiomics Approach. Medicine, 94, e1753.
https://doi.org/10.1097/MD.0000000000001753
[7]  胡丽霞, 江长思, 罗燕, 梅东东, 龚静山, 马捷. 基于机器学习的放射组学预测非小细胞肺癌EGFR基因突变[J]. 医学影像学杂志, 2019, 29(7): 1128-1131.
[8]  Coroller, T.P., Agrawal, V., Narayan, V., et al. (2016) Radiomic Phenotype Features Predict Patho-logical Response in Non-Small Cell Lung Cancer. Radiation Oncology, 119, 480-486.
https://doi.org/10.1016/j.radonc.2016.04.004
[9]  Coroller, T.P., Agrawal, V., Huynh, E., et al. (2017) Radio-mic-Based Pathological Response Prediction from Primary Tumors and Lymph Nodes in NSCLC. Journal of Thoracic Oncology, 12, 467-476.
https://doi.org/10.1016/j.jtho.2016.11.2226
[10]  Yang, B., Zhou, L., Zhong, J., et al. (2021) Combination of Com-puted Tomography Imaging-Based Radiomics and Clinicopathological Characteristics for Predicting the Clinical Benefits of Immune Checkpoint Inhibitors in Lung Cancer. Respiratory Research, 22, 189.
https://doi.org/10.1186/s12931-021-01780-2
[11]  张威, 周鹏, 任静, 许国辉, 罗红兵, 程祝忠, 刘建勇. 基于CT的放射组学预测模型对于肺癌患者化疗效果评价的研究[J]. 中国医学装备, 2022, 19(11): 65-68.
[12]  丛梦迪, 丛力宁, 张延伟, 任嘉梁, 李扬, 徐同欣, 李焱. 基于CT影像组学预测临床IA期老年非小细胞肺癌淋巴结转移[J]. 中国介入影像与治疗学, 2021, 18(2): 95-99.
https://doi.org/10.13929/j.issn.1672-8475.2021.02.008
[13]  朱静, 徐维国, 肖欢, 周莹. 影像组学联合预测模型在预测非小细胞肺癌淋巴结转移中的建立和应用价值[J]. 四川大学学报(医学版), 2019, 50(3): 373-378.
https://doi.org/10.13464/j.scuxbyxb.2019.03.016
[14]  Cho, Y.H., Seo, J.B., Lee, S.M., et al. (2021) Radiomics Approach for Survival Prediction in Chronic Obstructive Pulmonary Disease. European Radiology, 10, 7316-7324.
https://doi.org/10.1007/s00330-021-07747-7
[15]  Occhipinti, M., Paoletti, M., Bartholmai, B.J., et al. (2019) Spirometric Assessment of Emphysema Presence and Severity as Measured by Quan-titative CT and CT-Based Radiomics in COPD. Respiratory Research, 20, 101.
https://doi.org/10.1186/s12931-019-1049-3
[16]  Gawlitza, J., Sturm, T., Spohrer, K., et al. (2019) Predicting Pul-monary Function Testing from Quantified Computed Tomography Using Machine Learning Algorithms in Patients with COPD. Diagnostics (Basel), 9, 33.
https://doi.org/10.3390/diagnostics9010033
[17]  杨柳琼, 郑建军, 向遥. 基于影像组学的矽肺病CT影像分期预测研究[J]. 影像研究与医学应用, 2023, 7(3): 47-50.
[18]  刘静. 基于CT图像的放射组学在矽肺、肺结核诊断和鉴别诊断中的价值[D]: [硕士学位论文]. 苏州: 苏州大学, 2018.
https://doi.org/10.27351/d.cnki.gszhu.2018.000484

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133