全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

神经网络用于心电图诊断房颤的研究进展
Research Progress of Neural Network in Electrocardiographic Diagnosis of Atrial Fibrillation

DOI: 10.12677/ACM.2023.134939, PP. 6712-6721

Keywords: 心房颤动,心电图,神经网络
Atrial Fibrillation
, Electrocardiogram, Neural Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

房颤的发病具有一定的隐匿性,传统的临床实践对于部分房颤患者的早期识别存在不足;人工智能在心电图领域的应用越来越深入,神经网络模型可以对多种不同的心率失常进行识别和预测。本文就神经网络在心电图诊断房颤方面的新进展作一综述。
Asmany episodes of atrial fibrillation remain asymptomatic, traditional clinical practice has defects in early identification of some patients with atrial fibrillation. Artificial intelligence is widely used in the field of electrocardiogram. Neural network models can identify and predict various kinds of ar-rhythmia. This article reviews the progress of neural network in electrocardiographic diagnosis for atrial fibrillation.

References

[1]  Bai, J., Lu, Y., Wang, H. and Zhao, J. (2022) How Synergy between Mechanistic and Statistical Models is Impacting Research in Atrial Fibrillation. Frontiers in Physiology, 13, Article 957604.
https://doi.org/10.3389/fphys.2022.957604
[2]  Pitman, B.M., Chew, S.-H., Wong, C.X., et al. (2022) Prevalence and Risk Factors for Atrial Fibrillation in a Semi-Rural Sub-Saharan African Population: The Heart of Ethiopia: Focus on Atrial Fibrillation (TEFF-AF) Study. Heart Rhythm O2, 3, 839-846.
https://doi.org/10.1016/j.hroo.2022.09.008
[3]  Machino, T., Aonuma, K., Maruo, K., et al. (2023) Randomized Crossover Trial of 2-Week Garment Electrocardiogram with Dry Textile Electrode to Reveal Instances of Post-Ablation Recurrence of Atrial Fibrillation Underdiagnosed during 24-Hour Holter Monitoring. PLOS ONE, 18, e0281818.
https://doi.org/10.1371/journal.pone.0281818
[4]  Wang, Y.-C., Xu, X., Hajra, A., et al. (2022) Current Ad-vancement in Diagnosing Atrial Fibrillation by Utilizing Wearable Devices and Artificial Intelligence: A Review Study. Diagnostics, 12, Article No. 689.
https://doi.org/10.3390/diagnostics12030689
[5]  Jin, Y., Qin, C., Liu, J., et al. (2020) A Novel Domain Adaptive Residual Network for Automatic Atrial Fibrillation Detection. Knowledge-Based Systems, 203, Article ID: 106122.
https://doi.org/10.1016/j.knosys.2020.106122
[6]  Wang, J. (2020) A Deep Learning Approach for Atrial Fibrilla-tion Signals Classification Based on Convolutional and Modified Elman Neural Network. Future Generation Computer Systems, 102, 670-679.
https://doi.org/10.1016/j.future.2019.09.012
[7]  Liu, Z., Zhang, Y., Chen, Y., Fan, X. and Dong, C. (2020) De-tection of Algorithmically Generated Domain Names Using the Recurrent Convolutional Neural Network with Spatial Pyramid Pooling. Entropy, 22, Article No. 1058.
https://doi.org/10.3390/e22091058
[8]  Ullah, H., Bin Heyat, M.B., Akhtar, F., et al. (2022) An End-to-End Car-diac Arrhythmia Recognition Method with an Effective DenseNet Model on Imbalanced Datasets Using ECG Signal. Computational Intelligence and Neuroscience, 2022, Article ID: 9475162.
https://doi.org/10.1155/2022/9475162
[9]  Hannun, A.Y., Rajpurkar, P., Haghpanahi, M., et al. (2019) Cardiolo-gist-Level Arrhythmia Detection and Classification in Ambulatory Electrocardiograms Using a Deep Neural Network. Nature Medicine, 25, 65-69.
https://doi.org/10.1038/s41591-018-0268-3
[10]  Ribeiro, A.H., Ribeiro, M.H., Paix?o, G.M.M., et al. (2020) Au-tomatic Diagnosis of the 12-Lead ECG Using a Deep Neural Network. Nature Communications, 11, Article No. 1760.
https://doi.org/10.1038/s41467-020-15432-4
[11]  Lai, J., Chen, Y., Han, B., et al. (2019) A DenseNet-Based Di-agnosis Algorithm for Automated Diagnosis Using Clinical ECG Data. Journal of Southern Medical University, 39, 69-75.
[12]  Kleyko, D., Osipov, E. and Wiklund, U. (2020) A Comprehensive Study of Complexity and Performance of Automatic Detection of Atrial Fibrillation: Classification of Long ECG Recordings Based on the PhysioNet Compu-ting in Cardiology Challenge 2017. Biomedical Physics & Engineering Express, 6, Article ID: 025010.
https://doi.org/10.1088/2057-1976/ab6e1e
[13]  Kashou, A.H., Ko, W.-Y., Attia, Z.I., et al. (2020) A Comprehen-sive Artificial Intelligence-Enabled Electrocardiogram Interpretation Program. Cardiovascular Digital Health Journal, 1, 62-70.
https://doi.org/10.1016/j.cvdhj.2020.08.005
[14]  Rabinstein, A.A., Yost, M.D., Faust, L., et al. (2021) Arti-ficial Intelligence-Enabled ECG to Identify Silent Atrial Fibrillation in Embolic Stroke of Unknown Source. Journal of Stroke and Cerebrovascular Diseases, 30, Article ID: 105998.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105998
[15]  Attia, Z.I., Noseworthy, P.A., Lopez-Jimenez, F., et al. (2019) An Artificial Intelligence-Enabled ECG Algorithm for the Identification of Patients with Atrial Fibrillation during Sinus Rhythm: A Retrospective Analysis of Outcome Prediction. Lancet, 394, 861-867.
https://doi.org/10.1016/S0140-6736(19)31721-0
[16]  Jansen, H.J., Bohne, L.J., Gillis, A.M. and Rose, R.A. (2020) A Trial Remodeling and Atrial Fibrillation in Acquired Forms of Cardiovascular Disease. Heart Rhythm O2, 1, 147-159.
https://doi.org/10.1016/j.hroo.2020.05.002
[17]  Schwamm, L.H., Kamel, H., Granger, C.B., et al. (2023) Predictors of Atrial Fibrillation in Patients with Stroke Attributed to Large- or Small-Vessel Disease: A Prespecified Secondary Analysis of the STROKE AF Randomized Clinical Trial. JAMA Neurology, 80, 99-103.
https://doi.org/10.1001/jamaneurol.2022.4038
[18]  Bisson, A., Lemrini, Y., El-Bouri, W., et al. (2022) Prediction of Incident Atrial Fibrillation in Post-Stroke Patients Using Machine Learning: A French Nationwide Study. Clinical Re-search in Cardiology.
https://doi.org/10.1007/s00392-022-02140-w
[19]  Lin, J.Y., Larson, J., Schoenberg, J., et al. (2022) Serial 7-Day Electrocardiogram Patch Screening for AF in High-Risk Older Women by the CHARGE-AF Score. JACC: Clinical Electrophysiology, 8, 1523-1534.
https://doi.org/10.1016/j.jacep.2022.08.024
[20]  Christopoulos, G., Graff-Radford, J., Lopez, C.L., et al. (2020) Artificial Intelligence-Electrocardiography to Predict Incident Atrial Fibrillation: A Population-Based Study. Circulation: Arrhythmia and Electrophysiology, 13, e009355.
https://doi.org/10.1161/CIRCEP.120.009355
[21]  Khurshid, S., Friedman, S., Reeder, C., et al. (2022) ECG-Based Deep Learning and Clinical Risk Factors to Predict Atrial Fibrillation. Circulation, 145, 122-133.
https://doi.org/10.1161/CIRCULATIONAHA.121.057480
[22]  Hindricks, G., Potpara, T., Dagres, N., et al. (2021) 2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the Diagnosis and Management of Atrial Fibrillation of the European Society of Cardiology (ESC) Developed with the Special Contribution of the European Heart Rhythm Association (EHRA) of the ESC. European Heart Journal, 42, 373-498.
https://doi.org/10.1093/eurheartj/ehaa612
[23]  Monahan, K.H., Bunch, T.J., Mark, D.B., et al. (2022) Influence of Atrial Fibrillation Type on Outcomes of Ablation vs. Drug Therapy: Results from CABANA. EP Europace, 24, 1430-1440.
https://doi.org/10.1093/europace/euac055
[24]  Peigh, G. and Passman, R.S. (2023) “Pill-in-Pocket” Anticoagulation for Stroke Prevention in Atrial Fibrillation. Journal of Cardiovascular Electrophysiology.
https://doi.org/10.1111/jce.15866
[25]  Lucà, F., Giubilato, S., Di Fusco, S.A., et al. (2021) Anticoagulation in Atrial Fibrillation Cardioversion: What Is Crucial to Take into Account. Journal of Clinical Medicine, 10, Article No. 3212.
https://doi.org/10.3390/jcm10153212
[26]  Tiver, K.D., Quah, J., Lahiri, A., Ganesan, A.N. and McGavigan, A.D. (2021) Atrial Fibrillation Burden: An Update—The Need for a CHA2DS2-VASc-Afburden Score. EP Europace, 23, 665-673.
https://doi.org/10.1093/europace/euaa287
[27]  Perino, A.C., Fan, J., Askari, M., et al. (2019) Practice Variation in Anticoagulation Prescription and Outcomes after Device-Detected Atrial Fibrillation. Circulation, 139, 2502-2512.
https://doi.org/10.1161/CIRCULATIONAHA.118.038988
[28]  Shashikumar, S.P., Shah, A.J., Clifforfd, G.D. and Nemati, S. (2018) Detection of Paroxysmal Atrial Fibrillation Using Attention-Based Bidirectional Recurrent Neural Networks. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, 19-23 August 2018, 715-723.
https://doi.org/10.1145/3219819.3219912
[29]  Kamel, H., Bartz, T.M., Longstreth Jr., W.T., et al. (2021) Cardiac Mechanics and Incident Ischemic Stroke: The Cardiovascular Health Study. Scientific Reports, 11, Article No. 17358.
https://doi.org/10.1038/s41598-021-96702-z
[30]  Gladstone, D.J., Spring, M., Dorian, P., et al. (2014) Atrial Fi-brillation in Patients with Cryptogenic Stroke. New England Journal of Medicine, 370, 2467-2477.
https://doi.org/10.1056/NEJMoa1311376
[31]  Diemberger, I., Biffi, M., Lorenzetti, S., et al. (2018) Predictors of Long-Term Survival Free from Relapses after Extraction of Infected CIED. EP Europace, 20, 1018-1027.
https://doi.org/10.1093/europace/eux121
[32]  Sijer?i?, A. and Tahirovi?, E. (2022) Photoplethysmography-Based Smart Devices for Detection of Atrial Fibrillation. Texas Heart Institute Journal, 49, e21756.
https://doi.org/10.14503/THIJ-21-7564
[33]  Saarinen, H.J., Joutsen, A., Korpi, K., et al. (223) Wrist-Worn Device Combining PPG and ECG Can Be Reliably Used for Atrial Fibrillation Detection in an Outpatient Setting. Frontiers in Cardiovascular Medicine, 10, Article 1100127.
https://doi.org/10.3389/fcvm.2023.1100127
[34]  Guo, Y., Wang, H., Zhang, H., et al. (2019) Mobile Photoplethysmographic Technology to Detect Atrial Fibrillation. Journal of the American College of Cardiology, 74, 2365-2375.
https://doi.org/10.1016/j.jacc.2019.08.019
[35]  Perez, M.V., Mahaffey, K.W., Hedlin, H., et al. (2019) Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. New England Journal of Medicine, 381, 1909-1917.
https://doi.org/10.1056/NEJMoa1901183
[36]  Lubitz, S.A., Faranesh, A.Z., Atlas, S.J., et al. (2021) Rationale and Design of a Large Population Study to Validate Software for the Assessment of Atrial Fibrillation from Data Acquired by a Consumer Tracker or Smartwatch: The Fitbit Heart Study. American Heart Journal, 238, 16-26.
https://doi.org/10.1016/j.ahj.2021.04.003
[37]  余超, 周伟, 王涛, 等. 可穿戴设备支持心房颤动人群筛查与管理研究进展[J]. 中国全科医学, 2023, 26(1): 113-117.
[38]  Curry, S.J., Krist, A.H., Owens, D.K., et al. (2018) Screening for Atrial Fibrillation with Electrocardiography: US Preventive Services Task Force Recommendation Statement. JAMA, 320, 478-484.
https://doi.org/10.1001/jama.2018.10321
[39]  Davidson, K.W., Barry, M.J., Mangione, C.M., et al. (2022) Screening for Atrial Fibrillation: US Preventive Services Task Force Recommendation Statement. JAMA, 327, 360-367.
https://doi.org/10.1001/jama.2021.23732
[40]  Chikwetu, L., Miao, Y., Woldetensae, M.K., et al. (2023) Does Deidentification of Data from Wearable Devices Give Us a False Sense of Security? A Systematic Review. Lancet Digit Health, 5, E239-E247.
https://doi.org/10.1016/S2589-7500(22)00234-5
[41]  Sehrawat, O., Kashou, A.H. and Noseworthy, P.A. (2022) Artificial Intelligence and Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 33, 1932-1943.
https://doi.org/10.1111/jce.15440

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133