|
大学生人格特质和心理健康的网络分析研究
|
Abstract:
目的:大学生心理健康问题一直是社会关注的主要问题,其发生率高,严重影响了在校大学生的心理健康和人格发展。而人格特质的核心与心理健康之间是否存在共同因素一直是争论的主题。不同人格特质与心理健康的不同方面有着独特的连接模式。本研究探讨了SCL-90量表与EPQ量表下的大学生的综合项目与维度网络结构,更深入地了解这一心理结构并为临床干预提供靶点。方法:使用艾森克人格量表(EPQ)和症状自评量表(SCL-90),对3566名大学生采用网络分析的方法,了解人格特质与心理健康之间的相互关系。网络分析以可视化与定量化的方式描述了各种相关性之间的中心性,为研究这一问题提供了新的视角。结果:在最终的网络中,我们发现神经质(E2)与敌对(SCL-6)之间的关系是最强关系。节点预期影响的估计值是稳定的(相关稳定性系数 = 0.59)。结论:网络模型是研究中国护理学大学生心理健康与人格特征的有效工具。本研究从网络角度探讨了心理健康与人格特征之间的项目和网络结构。EPQ2神经质具有最高的预期影响和可预测性,是人格特质中的风险型人格,EPQ1外倾性–内倾性是保护型人格。本研究为大学生人格特征与心理健康的干预提供了潜在的靶点和新的思路,可在临床实践中进行探索和验证。
Objective: College students’ mental health problems have always been a major concern in society, and their high incidence has seriously affected the mental health and personality development of college students. Whether there is a common factor between the core of personality traits and mental health has been the subject of debate. Different personality traits have unique patterns of connection to different aspects of mental health. In this study, the comprehensive project and dimensional network structure of college students under the SCL-90 scale and EPQ scale were explored, and this psychological structure was better understood and provided targets for clinical intervention. Methods: Using the Eysenck Personality Scale (EPQ) and Symptom Self-rating Scale (SCL-90), 3566 college students were subjected to network analysis to understand the interrelationship between personality traits and mental health. Network analysis describes the centrality between various correlations visually and quantitatively, providing new perspectives for studying this problem. Results: In the final network, we found that the relationship between neuroticism (E2) and hostility (SCL-6) was the strongest. The estimate of the expected impact of the node is stable (Correlation Stability = 0.59). Conclusion: The network model is an effective tool to study the mental health and personality characteristics of Chinese nursing college students. This study explores the project and network structure between mental health and personality traits from a network perspective. EPQ2 neuroticism has the highest expected impact and predictability and is a risky personality among personality traits, and EPQ1 extraversion-introversion is a protective personality. This study provides potential targets and new ideas for the intervention of personality characteristics and mental health of college students, which can be explored and verified in clinical practice.
[1] | Bohane, L., Maguire, N., & Richardson, T. (2017). Resilients, Overcontrollers and Undercontrollers: A Systematic Review of the Utility of a Personality Typology Method in Understanding Adult Mental Health Problems. Clinical Psychology Review, 57, 75-92. https://doi.org/10.1016/j.cpr.2017.07.005 |
[2] | Borsboom, D. (2017). A Network Theory of Mental Disorders. World Psychiatry: Official Journal of the World Psychiatric Association (WPA), 16, 5-13. https://doi.org/10.1002/wps.20375 |
[3] | Borsboom, D., & Cramer, A. O. (2013). Network Analysis: An Integrative Approach to the Structure of Psychopathology. Annual Review of Clinical Psychology, 9, 91-121. https://doi.org/10.1146/annurev-clinpsy-050212-185608 |
[4] | Briganti, G., Fried, E. I., & Linkowski, P. (2019). Network Analysis of Contingencies of Self-Worth Scale in 680 University Students. Psychiatry Research, 272, 252-257. https://doi.org/10.1016/j.psychres.2018.12.080 |
[5] | Bringmann, L. F., Elmer, T., Epskamp, S., Krause, R. W., Schoch, D., Wichers, M., Wigman, J. T. W., & Snippe, E. (2019). What Do Centrality Measures Measure in Psychological Networks? Journal of Abnormal Psychology, 128, 892-903.
https://doi.org/10.1037/abn0000446 |
[6] | Chen, M., Zhou, L., Ye, L., Lin, G., Pang, Y., Lu, L., & Wang, X. (2022). Initial Adherence by Psychiatric Outpatients in a General Hospital and Relevant Personal Factors. BMC Psychiatry, 22, 137. https://doi.org/10.1186/s12888-022-03797-3 |
[7] | Contreras, A., Nieto, I., Valiente, C., Espinosa, R., & Vazquez, C. (2019). The Study of Psychopathology from the Network Analysis Perspective: A Systematic Review. Psychotherapy and Psychosomatics, 88, 71-83.
https://doi.org/10.1159/000497425 |
[8] | Epskamp, S., Cramer, A. O., & Waldorp, L. J. (2012). qgraph: Network Visualizations of Relationships in Psychometric Data. Journal of Statistical Software, 48, 1-18. https://doi.org/10.18637/jss.v048.i04 |
[9] | Epskamp, S., & Fried, E. I. (2018). A Tutorial on Regularized Partial Correlation Networks. Psychological Methods, 23, 617-634. https://doi.org/10.1037/met0000167 |
[10] | Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating Psychological Networks and Their Accuracy: A Tutorial Paper. Behavior Research Methods, 50, 195-212. https://doi.org/10.3758/s13428-017-0862-1 |
[11] | Epskamp, S., Waldorp, L. J., M?ttus, R., & Borsboom, D. (2018). The Gaussian Graphical Model in Cross-Sectional and Time-Series Data. Multivariate Behavioral Research, 53, 453-480. https://doi.org/10.1080/00273171.2018.1454823 |
[12] | Feng, T., Ren, L., Liu, C., Li, K., Wu, L., Wei, X., Yuan, S., Cui, L. B., Yang, X., Li, D., Yang, W., Li, Y., Wang, B., Wang, H., & Liu, X. (2022). The Relations between Different Components of Intolerance of Uncertainty and Symptoms of Depression during the COVID-19 Pandemic: A Network Analysis. Frontiers in Psychiatry, 13, Article ID: 993814.
https://doi.org/10.3389/fpsyt.2022.993814 |
[13] | Fruchterman, T. M. J., & Pringold, E. M. (1991). Graph Drawing by Force-Directed Placement. Software-Practice and Experiences, 21, 1129-1164. https://doi.org/10.1002/spe.4380211102 |
[14] | Galderisi, S., Rucci, P., Kirkpatrick, B., Mucci, A., Gibertoni, D., Rocca, P., Rossi, A., Bertolino, A., Strauss, G. P., Aguglia, E., Bellomo, A., Murri, M. B., Bucci, P., Carpiniello, B., Comparelli, A., Cuomo, A., De Berardis, D., Dell’Osso, L., Di Fabio, F., Gelao, B., & Italian Network for Research on Psychoses (2018). Interplay among Psychopathologic Variables, Personal Resources, Context-Related Factors, and Real-Life Functioning in Individuals with Schizophrenia: A Network Analysis. JAMA Psychiatry, 75, 396-404. https://doi.org/10.1001/jamapsychiatry.2017.4607 |
[15] | Glozah, F. N. (2014). Exploring the Role of Self-Esteem and Parenting Patterns on Alcohol Use and Abuse among Adolescents. Health Psychology Research, 2, 1898. https://doi.org/10.4081/hpr.2014.1898 |
[16] | Haslbeck, J. M. B., & Fried, E. I. (2017). How Predictable Are Symptoms in Psychopathological Networks? A Reanalysis of 18 Published Datasets. Psychological Medicine, 47, 2767-2776. https://doi.org/10.1017/S0033291717001258 |
[17] | H?usler, J., & Sommer, M. (2008). The Effect of Success Probability on Test Economy and Self-Confidence in Computerized Adaptive Tests. Psychological Science, 50, 75. |
[18] | Hofmann, S. G., Curtiss, J., & McNally, R. J. (2016). A Complex Network Perspective on Clinical Science. Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 11, 597-605.
https://doi.org/10.1177/1745691616639283 |
[19] | Jones, P. J., Ma, R., & McNally, R. J. (2021). Bridge Centrality: A Network Approach to Understanding Comorbidity. Multivariate Behavioral Research, 56, 353-367. https://doi.org/10.1080/00273171.2019.1614898 |
[20] | Kontoangelos, K., Papageorgiou, C. C., Raptis, A. E., Tsiotra, P., Lambadiari, V., Papadimitriou, G. N., Rabavilas, A. D., Dimitriadis, G., & Raptis, S. A. (2015). Homocysteine, Cortisol, Diabetes Mellitus, and Psychopathology. Journal of Diabetes Research, 2015, Article ID: 354923. https://doi.org/10.1155/2015/354923 |
[21] | Marcus, D. K., Preszler, J., & Zeigler-Hill, V. (2018). A Network of Dark Personality Traits: What Lies at the Heart of Darkness? Journal of Research in Personality, 73, 56-62. https://doi.org/10.1016/j.jrp.2017.11.003 |
[22] | McAdams, D. P., & Olson, B. D. (2010). Personality Development: Continuity and Change over the Life Course. Annual Review of Psychology, 61, 517-542. https://doi.org/10.1146/annurev.psych.093008.100507 |
[23] | Myin-Germeys, I., Kasanova, Z., Vaessen, T., Vachon, H., Kirtley, O., Viechtbauer, W., & Reininghaus, U. (2018). Experience Sampling Methodology in Mental Health Research: New Insights and Technical Developments. World Psychiatry: Official Journal of the World Psychiatric Association (WPA), 17, 123-132. https://doi.org/10.1002/wps.20513 |
[24] | Myin-Germeys, I., Oorschot, M., Collip, D., Lataster, J., Delespaul, P., & van Os, J. (2009). Experience Sampling Research in Psychopathology: Opening the Black Box of Daily Life. Psychological Medicine, 39, 1533-1547.
https://doi.org/10.1017/S0033291708004947 |
[25] | Niedzwiecki, A., Roomi, M. W., Kalinovsky, T., & Rath, M. (2016). Anticancer Efficacy of Polyphenols and Their Combinations. Nutrients, 8, 552. https://doi.org/10.3390/nu8090552 |
[26] | O’Boyle, E. H., & Forsyth, D. R. (2021). Individual Differences in Ethics Positions: The EPQ-5. PLOS ONE, 16, e0251989.
https://doi.org/10.1371/journal.pone.0251989 |
[27] | Peng, J., Ren, L., Yang, N., Zhao, L., Fang, P., & Shao, Y. (2020). The Network Structure of Decision-Making Competence in Chinese Adults. Frontiers in Psychology, 11, Article ID: 563023. https://doi.org/10.3389/fpsyg.2020.563023 |
[28] | Preti, A., Carta, M. G., & Petretto, D. R. (2019). Factor Structure Models of the SCL-90-R: Replicability across Community Samples of Adolescents. Psychiatry Research, 272, 491-498. https://doi.org/10.1016/j.psychres.2018.12.146 |
[29] | Stochl, J., Soneson, E., Wagner, A. P., Khandaker, G. M., Goodyer, I., & Jones, P. B. (2019). Identifying Key Targets for Interventions to Improve Psychological Wellbeing: Replicable Results from four UK Cohorts. Psychological Medicine, 49, 2389-2396. https://doi.org/10.1017/S0033291718003288 |
[30] | Wang, X., Wang, K., Huang, K., Wu, X., Huang, W., & Yang, L. (2021). The Association between Demographic Characteristics, Personality, and Mental Health of Bus Drivers in China: A Structural Equation Model. Physiology & Behavior, 229, Article ID: 113247. https://doi.org/10.1016/j.physbeh.2020.113247 |
[31] | Wei, Y., Li, H., Wang, H., Zhang, S., & Sun, Y. (2018). Psychological Status of Volunteers in a Phase I Clinical Trial Assessed by Symptom Checklist 90 (SCL-90) and Eysenck Personality Questionnaire (EPQ). Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 24, 4968-4973.
https://doi.org/10.12659/MSM.909524 |
[32] | Williams, D. R., & Rast, P. (2020). Back to the Basics: Rethinking Partial Correlation Network Methodology. The British Journal of Mathematical and Statistical Psychology, 73, 187-212. https://doi.org/10.1111/bmsp.12173 |
[33] | Xie, Q., Torous, J., & Goldberg, S. B. (2022). E-Mental Health for People with Personality Disorders: A Systematic Review. Current Psychiatry Reports, 24, 541-552. https://doi.org/10.1007/s11920-022-01360-1 |
[34] | Zhang, L., Liu, X., Zheng, G. J., Zhou, L., Lin, D. Y., Wang, X. D., & He, H. (2012). Eysenck Personality and Psychosocial Status of Adult Patients with Malocclusion. Asian Pacific Journal of Tropical Medicine, 5, 151-156.
https://doi.org/10.1016/S1995-7645(12)60015-7 |