全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

PBO算法在量化交易中的应用——以黄金和比特币的交易策略为例
The Application of the PBO Algorithm in Quantitative Trading—Taking Gold and Bitcoin Trading Strategies as Examples

DOI: 10.12677/AAM.2023.124175, PP. 1690-1697

Keywords: 量化交易、PBO算法、CSCV框架
Quantitative Trading
, PBO Algorithm, Combinatorially-Symmetric Cross-Validation

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以黄金和比特币交易策略为例,讨论了PBO算法在量化交易中的应用。本文提出了一种基于PBO算法的动态优化算法用以优化交易模型参数。为了测试算法的性能与稳定性,本文介绍了五种基于传统技术分析理论的量化交易预测模型,并展示算法对这些模型参数优化后的结果。结果表明,与全局优化的结果相比,本文所提出的算法在两种资产及五种模型上都具有显著提升,说明算法具有良好的性能与稳定性。
This paper discusses the application of the PBO algorithm in quantitative trading, taking the exam-ples of trading strategies for gold and Bitcoin. A dynamic optimization algorithm based on the PBO algorithm is proposed in this paper to optimize trading model parameters. To test the performance and stability of the algorithm, the paper introduces five quantitative trading prediction models based on traditional technical analysis theory, and the results of optimizing the parameters of these models using the algorithm are presented. The results show that compared with the results of glob-al optimization, the algorithm proposed in this paper has significant improvements in both assets and all five models, indicating that the algorithm has good performance and stability.

References

[1]  Narang, R.K. (2011) Inside the Black Box: The Simple Truth about Quantitative Trading. John Wiley & Sons, Hobo-ken.
[2]  De Fusco, R.A., Mc Leavey, D.W., Pinto, J.E. and Runkle, D.E. (2015) Quantitative Investment Analysis. John Wiley & Sons, Hoboken.
[3]  Lo, A.W. and Mackinlay, A.C. (2011) A Non-Random Walk down Wall Street. Princeton University Press, Princeton.
https://doi.org/10.1515/9781400829095
[4]  Suhonen, A., Lennkh, M. and Perez, F. (2017) Quantifying Backtest Overfitting in Alternative Beta Strategies. The Journal of Portfolio Management, 43, 90-104.
https://doi.org/10.3905/jpm.2017.43.2.090
[5]  Bailey, D.H., Borwein, J.M., de Prado, M.L. and Zhu, Q.J. (2017) The Probability of Backtest Overfitting. Journal of Computational Finance, 20, 39-69.
https://doi.org/10.21314/JCF.2016.322
[6]  Colby, R.W. (2003) The Encyclopedia of Technical Market Indicators. 2nd Edition, Mcgraw Hill, New York.
[7]  张茂军, 饶华城, 南江霞, 王国栋. 基于决策树的量化交易择时策略[J]. 系统工程, 2022, 40(2): 118-130.
[8]  孔傲, 朱洪亮, 郭文旌. 一个基于技术指标规则的启发式量化择时系统[J]. 系统工程, 2019, 37(1): 111-122.
[9]  Drobetz, D.W., Neuhierl, A. and Wendt, V.S. (2021) Data Snooping in Equity Premium Prediction. International Journal of Forecasting, 37, 72-94.
https://doi.org/10.1016/j.ijforecast.2020.03.002

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133