全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

带状域无浮力扩散的二维Boussinesq方程的稳定性
Stability of the 2D Boussinesq Equations without Buoyancy Diffusion in Strip Domain

DOI: 10.12677/AAM.2023.124174, PP. 1683-1689

Keywords: Boussinesq方程,带状域,低正则性
Boussinesq Equations
, Strip Domain, Low Regularity

Full-Text   Cite this paper   Add to My Lib

Abstract:

我们证明了带状域R×(0,1)中不含浮力扩散具有Navier型滑移边界条件的二维Boussinesq方程在平衡状态(0,x2)附近的全局适定性。值得一提的是,本文仅利用能量估计,方程自身结构以及?1u利普希茨范数的衰减率即可获得低正则性结果。
We prove the global well-posedness for the 2D Boussinesq equations without buoyancy diffusion around the equilibrium state (0,x2) in the strip domain R×(0,1) with Navier-type slip boundary condition. It is worth mentioning that the results of low regularity are obtained using only the en-ergy estimate, the structure of the equations and the decay rate of Lip norm of 1u .

References

[1]  Majda, A. (2003) Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes, 9.
https://doi.org/10.1090/cln/009
[2]  Wan, R. (2019) Global Well-Posedness for the 2D Boussinesq Equations with a Velocity Damping Term. Discrete and Continuous Dynamical Systems, 39, 2709-2730.
[3]  Doering, C.R., Wu, J., Zhao, K. and Zheng, X. (2018) Long Time Behavior of the Two-Dimensional Boussinesq Equations without Buoyancy Diffusion. Physica D: Nonlinear Phe-nomena, 376-377, 144-159.
https://doi.org/10.1016/j.physd.2017.12.013
[4]  Lai, M., Pan, R. and Zhao, K. (2011) Initial Boundary Value Problem for Two-Dimensional Viscous Boussinesq Equations. Archive for Rational Mechanics and Analysis, 199, 739-760.
https://doi.org/10.1007/s00205-010-0357-z
[5]  Tao, L., Wu, J., Zhao, K. and Zheng, X. (2020) Stability Near Hydrostatic Equi-librium to the 2D Boussinesq Equations Without Thermal Diffusion. Archive for Rational Mechanics and Analysis, 237, 585-630.
https://doi.org/10.1007/s00205-020-01515-5
[6]  Dong, L. and Sun, Y. (2022) Asymptotic Stability of the 2D Boussinesq Equa-tions without Thermal Conduction. Journal of Differential Equations, 337, 507-540.
https://doi.org/10.1016/j.jde.2022.08.015

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133