|
带状域无浮力扩散的二维Boussinesq方程的稳定性
|
Abstract:
我们证明了带状域R×(0,1)中不含浮力扩散具有Navier型滑移边界条件的二维Boussinesq方程在平衡状态(0,x2)附近的全局适定性。值得一提的是,本文仅利用能量估计,方程自身结构以及?1u利普希茨范数的衰减率即可获得低正则性结果。
We prove the global well-posedness for the 2D Boussinesq equations without buoyancy diffusion around the equilibrium state (0,x2) in the strip domain R×(0,1) with Navier-type slip boundary condition. It is worth mentioning that the results of low regularity are obtained using only the en-ergy estimate, the structure of the equations and the decay rate of Lip norm of ?1u .
[1] | Majda, A. (2003) Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes, 9.
https://doi.org/10.1090/cln/009 |
[2] | Wan, R. (2019) Global Well-Posedness for the 2D Boussinesq Equations with a Velocity Damping Term. Discrete and Continuous Dynamical Systems, 39, 2709-2730. |
[3] | Doering, C.R., Wu, J., Zhao, K. and Zheng, X. (2018) Long Time Behavior of the Two-Dimensional Boussinesq Equations without Buoyancy Diffusion. Physica D: Nonlinear Phe-nomena, 376-377, 144-159.
https://doi.org/10.1016/j.physd.2017.12.013 |
[4] | Lai, M., Pan, R. and Zhao, K. (2011) Initial Boundary Value Problem for Two-Dimensional Viscous Boussinesq Equations. Archive for Rational Mechanics and Analysis, 199, 739-760. https://doi.org/10.1007/s00205-010-0357-z |
[5] | Tao, L., Wu, J., Zhao, K. and Zheng, X. (2020) Stability Near Hydrostatic Equi-librium to the 2D Boussinesq Equations Without Thermal Diffusion. Archive for Rational Mechanics and Analysis, 237, 585-630.
https://doi.org/10.1007/s00205-020-01515-5 |
[6] | Dong, L. and Sun, Y. (2022) Asymptotic Stability of the 2D Boussinesq Equa-tions without Thermal Conduction. Journal of Differential Equations, 337, 507-540. https://doi.org/10.1016/j.jde.2022.08.015 |