全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

分数阶扩散方程的无网格数值模拟
Mesh-Less Numerical Simulation of the Fractional Diffusion Equation

DOI: 10.12677/AAM.2023.124172, PP. 1664-1670

Keywords: 反常扩散,Caputo分数阶导数,径向基函数,有限差分
Anomalous Diffusion
, Caputo Fractional Derivative, Radial Basis Function, Finite Difference

Full-Text   Cite this paper   Add to My Lib

Abstract:

文章借助径向基无网格方法数值求解分数阶扩散方程,时间上使用有限差分方法离散时间导数,空间上分别选取Multi Quadrics (MQ),Thin Plate Spline (TPS)和Cubic三种径向基函数近似未知函数,比较得出三种径向基函数的逼近精度类似,但Cubic径向基函数无须选择形状参数,数值结果验证了该方法的可行性和有效性。
In this paper, the mesh-less method based on radial basis functions is used to solve the fractional diffusion equation numerically. In terms of time, finite difference method is used to discrete time derivatives. In terms of space, three approximate unknown functions of radial basis functions of Multi Quadrics (MQ), Thin Plate Spline (TPS) and Cubic are selected respectively. The approxima-tion accuracy of three kinds of radial basis function is similar, but Cubic radial basis function does not need to select shape parameter. Numerical results demonstrate the feasibility and effectiveness of the proposed method.

References

[1]  吕龙进. 分数阶奇异扩散方程的几种解法及其应用[D]: [博士学位论文]. 上海: 复旦大学, 2012.
[2]  Podlubny, I. (1999) Fractional Differential Equations. Academic Press, San Diego.
[3]  Agrawal, O.P. (2002) Solution for a Frac-tional Diffusion-Wave Equation Defined in a Bounded Domain. Nonlinear Dynamics, 29, 145-155.
https://doi.org/10.1023/A:1016539022492
[4]  杨晓忠, 吴立飞. 时间分数阶扩散方程的一种交替分带并行差分方法[J]. 工程数学学报, 2019, 36(5): 535-550.
[5]  白鹭, 薛定宇, 孟丽. 时间分数阶偏微分方程的数值算法研究[J]. 数学的实践与认识, 2021, 51(12): 245-251.
[6]  佘梓航. 空间分数阶偏微分方程的有限差分方法及快速算法[D]: [博士学位论文]. 汕头: 汕头大学, 2021.
https://doi.org/10.27295/d.cnki.gstou.2021.000658
[7]  陈景华, 刘发旺. Riesz分数阶反应-扩散方程数值近似的稳定性与收敛性分析[J]. 厦门大学学报(自然科学版), 2006(4): 466-469.
[8]  沈淑君. 分数阶对流——扩散方程的基本解和数值方法[D]: [博士学位论文]. 厦门: 厦门大学, 2008.
[9]  任晶. 分数阶方程的可解性与稳定性[D]: [博士学位论文]. 太原: 山西大学, 2021.
[10]  宋灵宇, 卢梦双, 武莉莉. Modified Kansa法在求解双调和方程中的应用[J]. 湖北文理学院学报, 2021, 42(2): 12-15.
[11]  Chen, W., Ye, L.J. and Sun, H.G. (2009) Fractional Dif-fusion Equations by the Kansa Method. Computers and Mathematics with Applications, 59, 1614-1620.
https://doi.org/10.1016/j.camwa.2009.08.004

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133