|
加权Bergman空间上具有调和符号的斜Toeplitz算子的正规性及亚正规性
|
Abstract:
本文对单位圆盘的加权Bergman空间上斜Toeplitz算子的正规性及亚正规性展开研究,得到了以有界解析函数、共轭解析函数及调和多项式函数为符号的斜Toeplitz算子是正规算子或亚正规算子的充要条件是其符号函数是零函数,当且仅当该类算子是零算子,也得到了该类算子的正规性和亚正规性是等价的。
The normality and hyponormality of slant Toeplitz operators on the weighted Bergman space of the unit disk are studied, and obtain the sufficient and necessary conditions for slant Toeplitz operators with bounded analytic function, conjugate analytic function and harmonic polynomial function to be normal or hyponormal are that their symbol functions are zero function, if and only if such opera-tors are zero operator, and also get the normality and the hyponormality of such operators are equivalent.
[1] | Ho, M.C. (1996) Properties of Slant Toeplitz Operators. Indiana University Mathematics Journal, 45, 843-862.
https://doi.org/10.1512/iumj.1996.45.1973 |
[2] | Ho, M.C. (1997) Spectra of Slant Toeplitz Operators with Contin-uous Symbol. Michigan Mathematical Journal, 44, 157-166. https://doi.org/10.1307/mmj/1029005627 |
[3] | Ho, M.C. (1997) Adjoints of Slant Toeplitz Operators. Integral Equations and Operator Theory, 29, 301-312.
https://doi.org/10.1007/BF01320703 |
[4] | Ho, M.C. (2001) Adjoints of Slant Toeplitz Operators II. Integral Equa-tions and Operator Theory, 41, 179-188.
https://doi.org/10.1007/BF01295304 |
[5] | Arora, S.C. and Batra, R. (2003) On Generalized Slant Toeplitz Opera-tors. Indian Journal of Mathematics, 45, 121-134. |
[6] | Arora, S.C. and Batra, R. (2004) On Generalized Slant Toeplitz Operators with Continuous Symbols. Yokohama Mathematical Journal, 51, 1-9. |
[7] | Arora, S.C. and Batra, R. (2005) Generalized Slant Toeplitz Operators on H2. Mathematische Nachrichten, 278, 347-355. https://doi.org/10.1002/mana.200310244 |
[8] | 安恒斌, 蹇人宜. Bergman空间上的斜Toeplitz算子[J]. 数学学报, 2004, 47(1): 103-110. |
[9] | Yang, J., Leng, A. and Lu, Y. (2007) K-Order Slant Toeplitz Operators on the Bergman Space. Northeastern Mathematical Journal, 23, 403-412. |
[10] | Lu, Y., Liu, C. and Yang, J. (2010) Commutativity of kth-Order Slant Toeplitz Operators. Mathematische Nachrichten, 283, 1304-1313. https://doi.org/10.1002/mana.200710100 |
[11] | 章国凤,于涛. Dirichlet空间上的斜Toeplitz算子[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 50-55. |
[12] | 朱洪敏. 单位多圆盘上Bergman空间上的k阶斜Toeplitz算子的一些研究[D]: [硕士学位论文]. 上海: 华东师范大学, 2012. |
[13] | Liu, C. and Lu, Y. (2013) Product and Commutativity of Slant Toeplitz Operators. Journal of Mathematical Research with Applications, 33, 122-126. |
[14] | Liu, C. and Lu, Y. (2013) Product and Commutativity of kth-Order Slant Toeplitz Operators. Abstract and Applied Analysis, 45, 900-914 |
[15] | 刘朝美, 倪维丹. Bergman空间上k阶斜Toeplitz算子的正规性及亚正规性[J]. 大连交通大学学报, 2016, 37(1): 113-116. |
[16] | 刘朝美, 高娇娇. 双圆盘的Bergman空间上k阶斜Toeplitz算子的交换性[J]. 大连交通大学学报, 2017, 38(5): 115-117+120. |
[17] | Singh, S.K. and Gupta, A. (2017) kTH-Order Slant Toeplitz Operators on the Fock Space. Advances in Operator Theory, 2, 318-333. |
[18] | Datt, G. and Ohri, N. (2018) Properties of Slant Toeplitz Operators on the Torus. Malaysian Journal of Mathematical Sciences, 12, 195-209. |
[19] | Datt, G. and Ohri, N. (2019) Slant Toeplitz Operators on the Lebesgue Space of the Torus. Khayyam Journal of Mathematics, 5, 65-76. |
[20] | Datt, G. and Pandey, S.K. (2020) Compression of Slant Toeplitz Operators on the Hardy Space of $n$-Dimensional Torus. Czechoslovak Mathematical Journal, 70, 997-1018. https://doi.org/10.21136/CMJ.2020.0088-19 |
[21] | Hazarika, M. and Marik, S. (2020) Reducing and Minimal Re-ducing Subspaces of Slant Toeplitz Operators. Advances in Operator Theory, 5, 336-346. https://doi.org/10.1007/s43036-019-00022-z |
[22] | 杜巧玲, 许安见. Hardy空间上的斜Toeplitz算子的极小约化子空间[J]. 重庆理工大学学报(自然科学), 2021, 35(8): 224-229. |
[23] | Pandey, S.K. and Datt, G. (2021) Multivariate Version of Slant Toeplitz Operators on the Lebesgue Space. Asian-European Journal of Mathematics, 14, 1-15. https://doi.org/10.1142/S1793557121501527 |
[24] | Hazarika, M. and Marik, S. (2021) Toeplitz and Slant Toeplitz Operators on the Polydisk. Arab Journal of Mathematical Sciences, 27, 73-93. https://doi.org/10.1016/j.ajmsc.2019.02.003 |
[25] | ?anucha, B. and Michalska, M. (2022) Compressions of kth-Order Slant Toeplitz Operators to Model Spaces. Lithuanian Mathematical Journal, 62, 69-87. https://doi.org/10.1007/s10986-021-09548-3 |