|
壁层上皮细胞与肾小球疾病
|
Abstract:
肾小球内皮细胞、系膜细胞、足细胞和壁层上皮细胞(parietal epithelial cells, PECs)作为肾小球的固有细胞,在肾小球疾病的发病机制中发挥着重要的作用。近年来,随着对PECs研究的不断深入,发现了其在正常生理功能和病理过程中可活化,并在肾小球新月体和球性硬化的形成和转归过程中发挥着重要作用。本文将对PECs在维持肾小球正常生理功能及在肾小球疾病发生发展过程中的作用及相关信号通路和信号分子作一综述。
Glomerular endothelial cells, mesangial cells, podocytes and parietal epithelial cells (PECs) play an important role in the pathogenesis of glomerular disease as intrinsic cells of the glomerular. In recent years, with the deepening of the research on PECs, it has been found that PECs can be activated in normal physiological functions and pathological processes, and play an important role in the formation and progression of glomerular crescents and spherical sclerosis. In this review, we will review the role of PECs in maintaining normal physiological functions of glomerulus and in the occurrence and development of glomerular diseases as well as the related signaling pathways and molecules.
[1] | Kuppe, C., Leuchtle, K., Wagner, A., et al. (2019) Novel Parietal Epithelial Cell Subpopulations Contribute to Focal Segmental Glomer-ulosclerosis and Glomerular Tip Lesions. Kidney International, 96, 80-93.
https://doi.org/10.1016/j.kint.2019.01.037 |
[2] | Bronstein, R., Pace, J., Gowthaman, Y., et al. (2023) Podocyte-Parietal Epithelial Cell Interdependence in Glomerular Development and Disease. Journal of the American Society of Nephrology.
https://doi.org/10.1681/ASN.0000000000000104 |
[3] | Miesen, L., Steenbergen, E. and Smeets, B. (2017) Parietal Cells-New Perspectives in Glomerular Disease. Cell and Tissue Research, 369, 237-244. https://doi.org/10.1007/s00441-017-2600-5 |
[4] | Ohse, T., Pippin, J.W., Chang, A.M., et al. (2009) The Enigmatic Parietal Epi-thelial Cell Is Finally Getting Noticed: A Review. Kidney International, 76, 1225-1238. https://doi.org/10.1038/ki.2009.386 |
[5] | Wong, M.N., Tharaux, P.L., Grahammer, F., et al. (2021) Parietal Epithelial Cell Dys-function in Crescentic Glomerulonephritis. Cell and Tissue Research, 385, 345-354. https://doi.org/10.1007/s00441-021-03513-9 |
[6] | Shankland, S.J., Smeets, B., Pippin, J.W., et al. (2014) The Emergence of the Glomerular Parietal Epithelial Cell. Nature Reviews Nephrology, 10, 158-173. https://doi.org/10.1038/nrneph.2014.1 |
[7] | Shankland, S.J., Freedman, B.S. and Pippin, J.W. (2017) Can Podocytes Be Regener-ated in Adults? Current Opinion in Nephrology and Hypertension, 26, 154-164. https://doi.org/10.1097/MNH.0000000000000311 |
[8] | Ni, L., Yuan, C. and Wu, X. (2021) The Recruitment Mechanisms and Potential Therapeutic Targets of Podocytes from Parietal Epithelial Cells. Journal of Translational Medicine, 19, 441. https://doi.org/10.1186/s12967-021-03101-z |
[9] | Smeets, B. and Moeller, M.J. (2012) Parietal Epithelial Cells and Podocytes in Glomerular Diseases. Seminars in Nephrology, 32, 357-367. https://doi.org/10.1016/j.semnephrol.2012.06.007 |
[10] | Ohse, T., Chang, A.M., Pippin, J.W., et al. (2009) A New Function for Parietal Epithelial Cells: A Second Glomerular Barrier. American Journal of Physiology-Renal Physiology, 297, F1566-F1574.
https://doi.org/10.1152/ajprenal.00214.2009 |
[11] | Poulsom, R. and Little, M.H. (2009) Parietal Epithelial Cells Regenerate Podo-cytes. Journal of the American Society of Nephrology, 20, 231-233. https://doi.org/10.1681/ASN.2008121279 |
[12] | Kaverina, N.V., Eng, D.G., Freedman, B.S., et al. (2019) Dual Lineage Tracing Shows That Glomerular Parietal Epithelial Cells Can Transdif-ferentiate toward the Adult Podocyte Fate. Kidney International, 96, 597-611.
https://doi.org/10.1016/j.kint.2019.03.014 |
[13] | Gaut, J.P., Hoshi, M., Jain, S., et al. (2014) Claudin 1 and Nephrin Label Cellular Crescents in Diabetic Glomerulosclerosis. Human Pathology, 45, 628-635. https://doi.org/10.1016/j.humpath.2013.10.030 |
[14] | Ronconi, E., Sagrinati, C., Angelotti, M.L., et al. (2009) Regeneration of Glomerular Podocytes by Human Renal Progenitors. Journal of the American Society of Nephrology, 20, 322-332. https://doi.org/10.1681/ASN.2008070709 |
[15] | 丛月, 顾乐怡, 戴慧莉. 肾小球壁层上皮细胞在肾小球疾病发生发展中的作用[J]. 中国中西医结合肾病杂志, 2021, 22(2): 180-182. |
[16] | Su, H., Chen, S., He, F.F., et al. (2015) New Insights into Glomerular Parietal Epithelial Cell Activation and Its Signaling Pathways in Glomerular Diseases. BioMed Research International, 2015, Article ID: 318935.
https://doi.org/10.1155/2015/318935 |
[17] | Hamatani, H., Eng, D.G., Hiromura, K., et al. (2020) CD44 Impacts Glomerular Parie-tal Epithelial Cell Changes in the Aged Mouse Kidney. Physiological Reports, 8, e14487. https://doi.org/10.14814/phy2.14487 |
[18] | Zhao, X., Chen, X., Chima, A., et al. (2019) Albumin Induces CD44 Expression in Glomerular Parietal Epithelial Cells by Activating Extracellular Signal-Regulated Kinase 1/2 Pathway. Journal of Cellular Physiology, 234, 7224-7235.
https://doi.org/10.1002/jcp.27477 |
[19] | Eymael, J., Sharma, S., Loeven, M.A., et al. (2018) CD44 Is Required for the Pathogene-sis of Experimental Crescentic Glomerulonephritis and Collapsing Focal Segmental Glomerulosclerosis. Kidney International, 93, 626-642.
https://doi.org/10.1016/j.kint.2017.09.020 |
[20] | Ito, N., Sakamoto, K., Hikichi, C., et al. (2020) Biphasic MIF and SDF1 Expres-sion during Podocyte Injury Promote CD44-Mediated Glomerular Parietal Cell Migration in Focal Segmental Glomerulosclerosis. American Journal of Physiology-Renal Physiology, 318, F741-F753. https://doi.org/10.1152/ajprenal.00414.2019 |
[21] | Smeets, B., Stucker, F., Wetzels, J., et al. (2014) Detection of Activated Parietal Epithelial Cells on the Glomerular Tuft Distinguishes Early Focal Segmental Glomerulosclerosis from Minimal Change Disease. The American Journal of Pathology, 184, 3239-3248. https://doi.org/10.1016/j.ajpath.2014.08.007 |
[22] | Kitching, A.R. and Hutton, H.L. (2016) The Players: Cells Involved in Glomer-ular Disease. Clinical Journal of the American Society of Nephrology, 11, 1664-1674. https://doi.org/10.2215/CJN.13791215 |
[23] | Chan, G.C., Eng, D.G., Miner, J.H., et al. (2019) Differential Expression of Parietal Epithelial Cell and Podocyte Extracellular Matrix Proteins in Focal Segmental Glomerulosclerosis and Diabetic Nephropathy. American Journal of Physiology-Renal Physiology, 317, F1680-F1694. https://doi.org/10.1152/ajprenal.00266.2019 |
[24] | Huang, Y., Zhao, X., Zhang, Q., et al. (2023) Novel Therapeutic Perspectives for Crescentic Glomerulonephritis through Targeting Parietal Epithelial Cell Activation and Proliferation. Expert Opinion on Therapeutic Targets, 27, 55-69.
https://doi.org/10.1080/14728222.2023.2177534 |
[25] | Koda, R., Yoshino, A., Imanishi, Y., et al. (2014) Expression of Tight Junction Protein Claudin-1 in Human Crescentic Glomerulonephritis. International Journal of Nephrology, 2014, Article ID: 598670.
https://doi.org/10.1155/2014/598670 |
[26] | Moeller, M.J. and Smeets, B. (2014) Role of Parietal Epithelial Cells in Kidney Injury: The Case of Rapidly Progressing Glomerulonephritis and Focal and Segmental Glomerulosclerosis. Nephron Experimental Nephrology, 126, 97.
https://doi.org/10.1159/000360677 |
[27] | Miesen, L., Bándi, P., Willemsen, B., et al. (2022) Parietal Epithelial Cells Maintain the Epithelial Cell Continuum Forming Bowman’s Space in Focal Segmental Glomerulosclerosis. Disease Models & Mechanisms, 15, dmm046342.
https://doi.org/10.1242/dmm.046342 |
[28] | Sun, K., Xie, Q. and Hao, C.M. (2021) Mechanisms of Scarring in Focal Segmental Glomerulosclerosis. Kidney Disease (Basel), 7, 350-358. https://doi.org/10.1159/000517108 |
[29] | Zhong, J., Whitman, J.B., Yang, H.C., et al. (2019) Mechanisms of Scarring in Focal Segmental Glomerulosclerosis. Journal of Histochemistry & Cytochemistry, 67, 623-632. https://doi.org/10.1369/0022155419850170 |
[30] | Li, Z.H., Guo, X.Y., Quan, X.Y., et al. (2022) The Role of Parietal Epithelial Cells in the Pathogenesis of Podocytopathy. Frontiers in Physiology, 13, Article ID: 832772. https://doi.org/10.3389/fphys.2022.832772 |
[31] | Fatima, H., Moeller, M.J., Smeets, B., et al. (2012) Parietal Epithelial Cell Acti-vation Marker in Early Recurrence of FSGS in the Transplant. Clinical Journal of the American Society of Nephrology, 7, 1852-1858.
https://doi.org/10.2215/CJN.10571011 |
[32] | Schneider, R.R., Eng, D.G., Kutz, J.N., et al. (2017) Compound Effects of Aging and Experimental FSGS on Glomerular Epithelial Cells. Aging (Albany NY), 9, 524-546. https://doi.org/10.18632/aging.101176 |
[33] | Kawaguchi, T., Hasegawa, K., Yasuda, I., et al. (2021) Diabetic Condition Induces Hypertrophy and Vacuolization in Glomerular Parietal Epithelial Cells. Scientific Reports, 11, 1515. https://doi.org/10.1038/s41598-021-81027-8 |
[34] | Holderied, A., Romoli, S., Eberhard, J., et al. (2015) Glomerular Parietal Epi-thelial Cell Activation Induces Collagen Secretion and Thickening of Bowman’s Capsule in Diabetes. Laboratory Investigation, 95, 273-282.
https://doi.org/10.1038/labinvest.2014.160 |
[35] | Sicking, E.M., Fuss, A., Uhlig, S., et al. (2012) Subtotal Ablation of Parietal Epithelial Cells Induces Crescent Formation. Journal of the American Society of Nephrology, 23, 629-640. https://doi.org/10.1681/ASN.2011050449 |
[36] | Ohse, T., Vaughan, M.R., Kopp, J.B., et al. (2010) De Novo Expression of Po-docyte Proteins in Parietal Epithelial Cells during Experimental Glomerular Disease. American Journal of Physiology-Renal Physiology, 298, F702-F711.
https://doi.org/10.1152/ajprenal.00428.2009 |
[37] | Mckinney, C.A., Fattah, C., Loughrey, C.M., et al. (2014) Angiotensin-(1-7) and Angiotensin-(1-9) Function in Cardiac and Vascular Remodelling. Clinical Science (London), 126, 815-827. https://doi.org/10.1042/CS20130436 |
[38] | 赵雪茹, 黄岩杰, 杨晓青, 等. 参与肾小球壁层上皮细胞活化和表型转化的信号通路[J]. 肾脏病与透析肾移植杂志, 2020, 29(2): 165-170. |
[39] | Benigni, A., Morigi, M., Rizzo, P., et al. (2011) Inhibiting Angio-tensin-Converting Enzyme Promotes Renal Repair by Limiting Progenitor Cell Proliferation and Restoring the Glomerular Architecture. The American Journal of Pathology, 179, 628-638. https://doi.org/10.1016/j.ajpath.2011.04.003 |
[40] | Cassis, P., Zoja, C., Perico, L., et al. (2019) A Preclinical Overview of Emerging Therapeutic Targets for Glomerular Diseases. Expert Opinion on Therapeutic Targets, 23, 593-606. https://doi.org/10.1080/14728222.2019.1626827 |
[41] | Bollee, G., Flamant, M., Schordan, S., et al. (2011) Epidermal Growth Factor Receptor Promotes Glomerular Injury and Renal Failure in Rapidly Progressive Crescentic Glomerulonephri-tis. Nature Medicine, 17, 1242-1250.
https://doi.org/10.1038/nm.2491 |
[42] | Wu, X., Ren, L., Yang, Q., et al. (2022) Glucocorticoids Inhibit EGFR Signaling Activation in Podocytes in Anti-GBM Crescentic Glomerulonephritis. Frontiers in Medicine (Lausanne), 9, Article ID: 697443.
https://doi.org/10.3389/fmed.2022.697443 |
[43] | Mukherjee, M., Fogarty, E., Janga, M., et al. (2019) Notch Signaling in Kidney Development, Maintenance, and Disease. Biomolecules, 9, 692. https://doi.org/10.3390/biom9110692 |
[44] | Ueno, T., Kobayashi, N., Nakayama, M., et al. (2013) Aberrant Notch1-Dependent Effects on Glomerular Parietal Epithelial Cells Promotes Collapsing Focal Segmental Glomerulosclerosis with Progressive Podocyte Loss. Kidney International, 83, 1065-1075. https://doi.org/10.1038/ki.2013.48 |
[45] | Chen, L.H., Advani, S.L., Thai, K., et al. (2014) SDF-1/CXCR4 Signaling Preserves Microvascular Integrity and Renal Function in Chronic Kidney Disease. PLOS ONE, 9, e92227. https://doi.org/10.1371/journal.pone.0092227 |
[46] | Zhang, J., Yanez, D., Floege, A., et al. (2015) ACE-Inhibition Increases Po-docyte Number in Experimental Glomerular Disease Independent of Proliferation. Journal of the Renin-Angiotensin-Aldosterone System, 16, 234-248.
https://doi.org/10.1177/1470320314543910 |
[47] | Roeder, S.S., Barnes, T.J., Lee, J.S., et al. (2017) Activated ERK1/2 Increases CD44 in Glomerular Parietal Epithelial Cells Leading to Matrix Expansion. Kidney International, 91, 896-913. https://doi.org/10.1016/j.kint.2016.10.015 |
[48] | Smeets, B., Miesen, L. and Shankland, S.J. (2020) CD9 Is a Novel Target in Glomerular Diseases Typified by Parietal Epithelial Cell Activation. American Journal of Kidney Diseases, 75, 812-814.
https://doi.org/10.1053/j.ajkd.2019.08.012 |
[49] | Ye, C., Xiong, W., Lei, C.T., et al. (2020) MAD2B Contributes to Parietal Epi-thelial Cell Activation and Crescentic Glomerulonephritis via Skp2. American Journal of Physiology-Renal Physiology, 319, F636-F646.
https://doi.org/10.1152/ajprenal.00216.2020 |
[50] | Andeen, N.K., Nguyen, T.Q., Steegh, F., et al. (2015) The Phenotypes of Po-docytes and Parietal Epithelial Cells May Overlap in Diabetic Nephropathy. Kidney International, 88, 1099-1107. https://doi.org/10.1038/ki.2015.273 |
[51] | Kietzmann, L., Guhr, S.S., Meyer, T.N., et al. (2015) MicroRNA-193a Regulates the Transdifferentiation of Human Parietal Epithelial Cells toward a Podocyte Phenotype. Journal of the American Society of Nephrology, 26, 1389-1401.
https://doi.org/10.1681/ASN.2014020190 |
[52] | Bharati, J., Chander, P.N. and Singhal, P.C. (2023) Parietal Epithelial Cell Be-havior and Its Modulation by microRNA-193a. Biomolecules, 13, 266. https://doi.org/10.3390/biom13020266 |
[53] | Pace, J.A., Bronstein, R., Guo, Y., et al. (2021) Podocyte-Specific KLF4 Is Required to Maintain Parietal Epithelial Cell Quiescence in the KIDNEY. Science Advances, 7, eabg6600. https://doi.org/10.1126/sciadv.abg6600 |
[54] | Kurayama, R., Ito, N., Nishibori, Y., et al. (2011) Role of Amino Acid Transporter LAT2 in the Activation of mTORC1 Pathway and the Pathogenesis of Crescentic Glomerulo-nephritis. Laboratory Investigation, 91, 992-1006.
https://doi.org/10.1038/labinvest.2011.43 |
[55] | Burnworth, B., Pippin, J., Karna, P., et al. (2012) SSeCKS Sequesters Cyclin D1 in Glomerular Parietal Epithelial Cells and Influences Proliferative Injury in the Glomerulus. Laboratory Investigation, 92, 499-510.
https://doi.org/10.1038/labinvest.2011.199 |