全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

儿童急性B淋巴细胞白血病的分子特征及临床意义
Molecular Characteristics and Clinical Significance of Acute B-Cell Acute Lymphoblastic Leukemia in Children

DOI: 10.12677/ACM.2023.134908, PP. 6469-6477

Keywords: 急性淋巴细胞白血病,遗传特征,临床意义
Acute Lymphoblastic Leukemia
, Genetic Characteristics, Clinical Effects

Full-Text   Cite this paper   Add to My Lib

Abstract:

儿童急性淋巴细胞白血病是儿童时期最常见的血液恶性肿瘤,虽然病因研究已进行多年,但其在遗传水平上仍是一种异质性疾病。近年来随着测序技术的进步,遗传特征得到更深入的阐述。本文即从儿童急性B淋巴细胞白血病的常见分子特征进行简要概述,并讨论了它们对临床的影响。
Acute lymphoblastic leukemia is the most common hematologic malignancy in children. Although the etiology has been studied for a long time, it is still a heterogeneous disease at the genetic level. While with the development of sequencing technology in recent years, genetic characteristics have been further elaborated. In this article, the common molecular characteristics of acute B-cell lym-phoblastic leukemia in children are briefly summarized, and their clinical effects are discussed.

References

[1]  王凯玲, 梅妍妍, 崔蕾, 高超, 刘飞飞, 赵晓曦, 等. 两种化疗方案对于TEL-AML1融合基因阳性儿童急性淋巴细胞白血病的疗效比较[J]. 中国实验血液学杂志, 2014, 22(2): 285-290.
[2]  Capria, S., Molica, M., Mohamed, S., et al. (2020) A Review of Current Induction Strategies and Emerging Prognostic Factors in the Management of Children and Adolescents with Acute Lymphoblastic Leukemia. Expert Review of Hematology, 13, 755-769.
https://doi.org/10.1080/17474086.2020.1770591
[3]  Inaba, H. and Pui, C.-H. (2021) Advances in the Diagnosis and Treatment of Pediatric Acute Lymphoblastic Leukemia. Journal of Clinical Medicine, 10, 1926.
https://doi.org/10.3390/jcm10091926
[4]  Abdelmabood, S., Fouda, A.E., Boujettif, F. and Mansour, A. (2020) Treatment Outcomes of Children with Acute Lymphoblastic Leukemia in a Middle-Income Developing Country: High Mortalities, Early Relapses, and Poor Survival. The Journal of Pediatrics (Rio J), 96, 108-116.
https://doi.org/10.1016/j.jped.2018.07.013
[5]  Bernt, K.M. and Hunger, S.P. (2014) Current Concepts in Pediatric Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Frontiers in Oncology, 4, 54.
https://doi.org/10.3389/fonc.2014.00054
[6]  Mullighan, C.G., Miller, C.B., Radtke, I., Phillips, L.A., Dalton, J., Ma, J., et al. (2008) BCR-ABL1 Lymphoblastic Leukaemia Is Characterized by the Deletion of Ikaros. Nature, 453, 110-114.
https://doi.org/10.1038/nature06866
[7]  Iacobucci, I., Lonetti, A., Paoloni, F., et al. (2010) The PAX5 Gene Is Frequently Rearranged in BCR-ABL1-Positive Acute Lymphoblastic Leukemia but Is Not Associated with Outcome. A Report on Behalf of the GIMEMA Acute Leukemia Working Party. Haematologica, 95, 1683-1690.
https://doi.org/10.3324/haematol.2009.020792
[8]  Notta, F., Mullighan, C.G., Wang, J.C.Y., Poeppl, A., Dou-latov, S., Phillips, L.A., et al. (2011) Evolution of Human BCR-ABL1 Lymphoblastic Leukaemia-Initiating Cells. Nature, 469, 362-367.
https://doi.org/10.1038/nature09733
[9]  Churchman, M.L. and Mullighan, C.G. (2017) Ikaros: Ex-ploiting and Targeting the Hematopoietic Stem Cell Niche in B-Progenitor Acute Lymphoblastic Leukemia. Experimental Hematology, 46, 1-8.
https://doi.org/10.1016/j.exphem.2016.11.002
[10]  Mizuta, S., Matsuo, K., Yagasaki, F., Yujiri, T., Hatta, Y., Ki-mura, Y., et al. (2011) Pre-Transplant Imatinib-Based Therapy Improves the Outcome of Allogeneic Hematopoietic Stem Cell Transplantation for BCR-ABL-Positive Acute Lymphoblastic Leukemia. Leukemia, 25, 41-47.
https://doi.org/10.1038/leu.2010.228
[11]  Jing, Y., Chen, H.R., Liu, M.J., et al. (2014) Susceptibility of Ph-Positive All to TKI Therapy Associated with Bcr-Abl Rearrangement Patterns: A Retrospective Analysis. PLOS ONE, 9, e110431.
https://doi.org/10.1371/journal.pone.0110431
[12]  Chang, B.H., Willis, S.G., Stork, L., Hunger, S.P., Carroll, W.L., Camitta, B.M., et al. (2012) Imatinib Resistant BCR-ABL1 Mutations at Relapse in Children with Ph+ ALL: A Children’s Oncology Group (COG) Study. British Journal of Haematology, 157, 507-510.
https://doi.org/10.1111/j.1365-2141.2012.09039.x
[13]  Cerchione, C., Locatelli, F. and Martinelli, G. (2021) Da-satinib in the Management of Pediatric Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Frontiers in Oncology, 11, Article ID: 632231.
https://doi.org/10.3389/fonc.2021.632231
[14]  Dalle, I.A., Jabbour, E., Short, N.J. and Ravandi, F. (2019) Treat-ment of Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Current Treatment Options in Oncology, 20, 4.
https://doi.org/10.1007/s11864-019-0603-z
[15]  曹文静, 李硕敏. BCR-ABL1激酶抑制剂的疗效与耐药机制研究进展[J]. 肿瘤药学, 2020, 10(6): 641-648.
[16]  Roberts, K.G., Li, Y.J., Payne-Turner, D., Harvey, R.C., Yang, Y.-L., Pei, D.Q., et al. (2014) Targetable Kinase-Activating Lesions in Ph-Like Acute Lymphoblastic Leukemia. The New England Journal of Medicine, 371, 1005-1015.
https://doi.org/10.1056/NEJMoa1403088
[17]  Ou, Z.S., Sherer, M., Casey, J., Bakos, H.A., Vitullo, K., Hu, J., et al. (2016) The Genomic Landscape of PAX5, IKZF1, and CDKN2A/B Alterations in B-Cell Precursor Acute Lympho-blastic Leukemia. Cytogenetic and Genome Research, 150, 242-252.
https://doi.org/10.1159/000456572
[18]  Roberts, K.G., Pei, D., Campana, D., Payne-Turner, D., Li, Y.J., Cheng, C., et al. (2014) Outcomes of Children with BCR-ABL1-Like Acute Lymphoblastic Leukemia Treated with Risk-Directed Therapy Based on the Levels of Minimal Residual Disease. Journal of Clinical Oncology, 32, 3012-3020.
https://doi.org/10.1200/JCO.2014.55.4105
[19]  Heatley, S.L., Sadras, T., Kok, C.H., Nievergall, E., Quek, K., Dang, P., et al. (2017) High Prevalence of Relapse in Children with Philadelphia-Like Acute Lymphoblastic Leukemia Despite Risk-Adapted Treatment. Haematologica, 102, e490-e493.
https://doi.org/10.3324/haematol.2016.162925
[20]  张钰, 吴秉毅. CRLF2基因在B系急性淋巴细胞白血病中的研究进展[J]. 广东医学, 2017, 38(S1): 292-294.
[21]  Roberts, K.G., Morin, R.D., Zhang, J.H., Hirst, M., Zhao, Y.J., Su, X.P., et al. (2012) Genetic Alterations Activating Kinase and Cytokine Receptor Signaling in High-Risk Acute Lymphoblastic Leukemia. Cancer Cell, 22, 153-166.
https://doi.org/10.1016/j.ccr.2012.06.005
[22]  Roberts, K.G., Yang, Y.-L., Payne-Turner, D., Lin, W.W., Files, J.K., Dickerson, K., et al. (2017) Oncogenic Role and Therapeutic Targeting of ABL-Class and JAK-STAT Activating Kinase Alterations in Ph-Like ALL. Blood Advances, 1, 1657-1671.
[23]  Iacobucci, I., Li, Y.J., Roberts, K.G., Dobson, S.M., Kim, J.C., Payne-Turner, D., et al. (2016) Truncating Erythropoietin Receptor Rearrangements in Acute Lympho-blastic Leukemia. Cancer Cell, 29, 186-200.
https://doi.org/10.1016/j.ccell.2015.12.013
[24]  Kobayashi, K., Miyagawa, N., Mitsui, K., Matsuoka, M., Kojima, Y., Takahashi, H., et al. (2015) TKI Dasatinib Monotherapy for a Patient with Ph-Like ALL Bearing ATF7IP/PDGFRB Translocation. Pediatric Blood & Cancer, 62, 1058-1060.
https://doi.org/10.1002/pbc.25327
[25]  Zhang, G., Zhang, Y.L., Wu, J.R., Chen, Y. and Ma, Z.G. (2017) Acute Lymphoblastic Leukemia Patient with Variant ATF7IP/PDGFRB Fusion and Favorable Response to Tyrosine Kinase Inhibitor Treatment: A Case Report. American Journal of Case Re-ports, 18, 1204-1208.
https://doi.org/10.12659/AJCR.906300
[26]  Reshmi, S.C., Harvey, R.C., Roberts, K.G., et al. (2017) Targetable Kinase Gene Fusions in High-Risk B-ALL: A Study from the Children’s Oncology Group. Blood, 129, 3352-3361.
https://doi.org/10.1182/blood-2016-12-758979
[27]  Sundaresh, A. and Williams, O. (2017) Mechanism of ETV6-RUNX1 Leukemia. Advances in Experimental Medicine and Biology, 962, 201-216.
https://doi.org/10.1007/978-981-10-3233-2_13
[28]  Shurtleff, S.A., Buijs, A., Behm, F.G., Rubnitz, J.E., Raimon-di, S.C., Hancock, M.L., et al. (1995) TEL/AML1 Fusion Resulting from a Cryptic t(12;21) Is the Most Common Ge-netic Lesion in Pediatric ALL and Defines a Subgroup of Patients with an Excellent Prognosis. Leukemia, 9, 1985-1989.
[29]  Rubnitz, J.E., Wichlan, D., Devidas, M., Shuster, J., Linda, S.B., Kurtzberg, J., et al. (2008) Prospec-tive Analysis of TEL Gene Rearrangements in Childhood Acute Lymphoblastic Leukemia: A Children’s Oncology Group Study. Journal of Clinical Oncology, 26, 2186-2191.
https://doi.org/10.1200/JCO.2007.14.3552
[30]  Andreasson, P., Schwaller, J., Anastasiadou, E., Aster, J. and Gil-liland, D.G. (2001) The Expression of ETV6/CBFA2 (TEL/AML1) Is Not Sufficient for the Transformation of Hema-topoietic Cell Lines in Vitro or the Induction of Hematologic Disease in Vivo. Cancer Genetics and Cytogenetics, 130, 93-104.
https://doi.org/10.1016/S0165-4608(01)00518-0
[31]  Morrow, M., Horton, S., Kioussis, D., Brady, H.J.M. and Williams, O. (2004) TEL-AML1 Promotes Development of Specific Hematopoietic Lineages Consistent with Preleuke-mic Activity. Blood, 103, 3890-3896.
https://doi.org/10.1182/blood-2003-10-3695
[32]  Cavé, H., Cacheux, V., Raynaud, S., Brunie, G., Bakkus, M., Cochaux, P., et al. (1997) ETV6 Is the Target of Chromosome 12p Deletions in t(12;21) Childhood Acute Lymphocytic Leukemia. Leukemia, 11, 1459-1464.
https://doi.org/10.1038/sj.leu.2400798
[33]  McLean, T.W., Ringold, S., Neuberg, D., Stegmaier, K., Tantravahi, R., Ritz, J., et al. (1996) TEL/AML-1 Dimerizes and Is Associated with a Favorable Outcome in Childhood Acute Lympho-blastic Leukemia. Blood, 88, 4252-4258.
https://doi.org/10.1182/blood.V88.11.4252.bloodjournal88114252
[34]  王邢玮, 李本尚, 沈树红, 陈静, 汤静燕, 等. ETV6/RUNX1阳性儿童急性B系淋巴细胞白血病临床预后研究[J]. 临床儿科杂志, 2016, 34(5): 321-325.
[35]  Wang, Y., Zeng, H.-M. and Zhang, L.-P. (2018) ETV6/RUNX1-Positive Childhood Acute Lympho-blastic Leukemia in China: Excellent Prognosis with Improved BFM Protocol. Italian Journal of Pediatrics, 44, 94.
https://doi.org/10.1186/s13052-018-0541-6
[36]  Gu, Z.H., Churchman, M.L., Roberts, K.G., Moore, I., Zhou, X., Nakitandwe, J., et al. (2019) PAX5-Driven Subtypes of B-Progenitor Acute Lymphoblastic Leukemia. Nature Genetics, 51, 296-307.
https://doi.org/10.1038/s41588-018-0315-5
[37]  Jeha, S., Choi, J., Roberts, K.G., Pei, D.Q., Coustan-Smith, E., Inaba, H., et al. (2021) Clinical Significance of Novel Subtypes of Acute Lymphoblastic Leukemia in the Context of Minimal Residual Disease-Directed Therapy. Blood Cancer Discovery, 2, 326-337.
https://doi.org/10.1158/2643-3230.BCD-20-0229
[38]  Lee, S.H.R., Li, Z.H., Tai, S.T., Oh, B.L.Z. and Yeoh, A.E.J. (2021) Genetic Alterations in Childhood Acute Lymphoblastic Leukemia: Interactions with Clinical Features and Treatment Response. Cancers (Basel), 13, 4068.
https://doi.org/10.3390/cancers13164068
[39]  Winters, A.C. and Bernt, K.M. (2017) MLL-Rearranged Leukemi-as—An Update on Science and Clinical Approaches. Frontiers in Pediatrics, 5, 4.
https://doi.org/10.3389/fped.2017.00004
[40]  Jansen, M.W.J.C., Corral, L., van der Velden, V.H.J., Pan-zer-Grümayer, R., Schrappe, M., Schrauder, A., et al. (2007) Immunobiological Diversity in Infant Acute Lymphoblastic Leukemia Is Related to the Occurrence and Type of MLL Gene Rearrangement. Leukemia, 21, 633-641.
https://doi.org/10.1038/sj.leu.2404578
[41]  Andersson, A.K., Ma, J., Wang, J.M., Chen, X., Gedman, A.L., Dang, J.J., et al. (2015) The Landscape of Somatic mutations in Infant MLL-Rearranged Acute Lymphoblastic Leukemias. Na-ture Genetics, 47, 330-337.
https://doi.org/10.1038/ng.3230
[42]  Tauchi, H., Tomizawa, D., Eguchi, M., et al. (2008) Clinical Features and Outcome of MLL Gene Rearranged Acute Lymphoblastic Leukemia in Infants with Additional Chromosomal Abnormal-ities Other than 11q23 Translocation. Leukemia Research, 32, 1523-1529.
https://doi.org/10.1016/j.leukres.2008.03.018
[43]  Chen, C.-W., Koche, R.P., Sinha, A.U., Deshpande, A.J., Zhu, N., Eng, R., et al. (2015) DOT1L Inhibits SIRT1-Mediated Epigenetic Silencing to Maintain Leukemic Gene Expression in MLL-Rearranged Leukemia. Nature Medicine, 21, 335-343.
https://doi.org/10.1038/nm.3832
[44]  Klossowski, S., Miao, H.Z., Kempinska, K., Wu, T., Purohit, T., Kim, E., et al. (2020) Menin Inhibitor MI-3454 Induces Remission in MLL1-Rearranged and NPM1-Mutated Models of Leukemia. Journal of Clinical Investigation, 130, 981-997.
https://doi.org/10.1172/JCI129126
[45]  Aspland, S.E., Bendall, H.H. and Murre, C. (2001) The Role of E2A-PBX1 in Leukemogenesis. Oncogene, 20, 5708- 5717.
https://doi.org/10.1038/sj.onc.1204592
[46]  Diakos, C., Xiao, Y.Y., Zheng, S.C., Kager, L., Dworzak, M. and Wiemels, J.L. (2014) Direct and Indirect Targets of the E2A-PBX1 Leukemia-Specific Fusion Protein. PLOS ONE, 9, e87602.
https://doi.org/10.1371/journal.pone.0087602
[47]  Jeha, S., Pei, D., Raimondi, S.C., Onciu, M., Campana, D., Cheng, C., et al. (2009) Increased Risk for CNS Relapse in Pre-B Cell Leukemia with the t(1;19)/TCF3-PBX1. Leuke-mia, 23, 1406-1409.
https://doi.org/10.1038/leu.2009.42
[48]  Bicocca, V.T., Chang, B.H., Masouleh, B.K., Mus-chen, M., Loriaux, M.M., Druker, B.J., et al. (2012) Crosstalk between ROR1 and the Pre-B Cell Receptor Promotes Survival of t(1;19) Acute Lymphoblastic Leukemia. Cancer Cell, 22, 656-667.
https://doi.org/10.1016/j.ccr.2012.08.027
[49]  Crist, W.M., Carroll, A.J., Shuster, J.J., Behm, F.G., Whitehead, M., Vietti, T.J., et al. (1990) Poor Prognosis of Children with pre-B Acute Lymphoblastic Leukemia Is Associated with the t(1;19)(q23;p13): A Pediatric Oncology Group Study. Blood, 76, 117-122.
https://doi.org/10.1182/blood.V76.1.117.117
[50]  Lin, A., Cheng, F.W.T., Chiang, A.K.S., Luk, C.-W., Li, R.C.H., Ling, A.S.C., et al. (2018) Excellent Outcome of Acute Lymphoblastic Leukaemia with TCF3-PBX1 Rearrangement in Hong Kong. Pediatric Blood & Cancer, 65, e27346.
https://doi.org/10.1002/pbc.27346
[51]  Wang, Y., Xue, Y.-J., Lu, A.-D., Jia, Y.-P., Zuo, Y.-X., Zhang, L.-P., et al. (2021) Long-Term Results of the Risk- Stratified Treatment of TCF3-PBX1-Positive Pediatric Acute Lymphoblastic Leukemia in China. Clinical Lymphoma, Myeloma and Leukemia, 21, e137-e144.
https://doi.org/10.1016/j.clml.2020.09.009
[52]  Fischer, U., Forster, M., Rinaldi, A., Risch, T., Sungalee, S., Warnatz, H.-J., et al. (2015) Genomics and Drug Profiling of Fatal TCF3-HLF-Positive Acute Lymphoblastic Leukemia Identifies Recurrent Mutation Patterns and Therapeutic Options. Nature Genetics, 47, 1020-1029.
https://doi.org/10.1038/ng.3362
[53]  Kachroo, P., Szymczak, S., Heinsen, F.-A., Forster, M., Bethune, J., Hemmrich-Stanisak, G., et al. (2018) NGS-Based Methylation Profiling Differentiates TCF3-HLF and TCF3-PBX1 Positive B-Cell Acute Lymphoblastic Leukemia. Epigenomics, 10, 133-147.
https://doi.org/10.2217/epi-2017-0080
[54]  Wang, T.Y., Wan, X.Y., Yang, F., Shi, W.H., Liu, R., Ding, L.X., et al. (2021) Successful Treatment of TCF3-HLF- Positive Childhood B-ALL with Chimeric Antigen Receptor T-Cell Therapy. Clinical Lymphoma, Myeloma and Leukemia, 21, 386-392.
https://doi.org/10.1016/j.clml.2021.01.014
[55]  Stanulla, M., Cavé, H. and Moorman, A.V. (2020) IKZF1 Dele-tions in Pediatric Acute Lymphoblastic Leukemia: Still a Poor Prognostic Marker? Blood, 135, 252-260.
https://doi.org/10.1182/blood.2019000813
[56]  Marke, R., van Leeuwen, F.N. and Scheijen, B. (2018) The Many Faces of IKZF1 in B-Cell Precursor Acute Lymphoblastic Leukemia. Haematologica, 103, 565-574.
https://doi.org/10.3324/haematol.2017.185603
[57]  Joshi, I., Yoshida, T., Jena, N., et al. (2014) Loss of Ikaros DNA-Binding Function Confers Integrin-Dependent Survival on pre-B Cells and Progression to Acute Lymphoblastic Leukemia. Nature Immunology, 15, 294-304.
https://doi.org/10.1038/ni.2821
[58]  van der Veer, A., Zaliova, M., Mottadelli, F., De Lorenzo, P., Te Kronnie, G., Harrison, C.J., et al. (2014) IKZF1 Status as a Prognostic Feature in BCR-ABL1-Positive Childhood All. Blood, 123, 1691-1698.
https://doi.org/10.1182/blood-2013-06-509794
[59]  Sulong, S., Moorman, A.V., Irving, J.A.E., Strefford, J.C., Konn, Z.J., Case, M.C., et al. (2009) A Comprehensive Analysis of the CDKN2A Gene in Childhood Acute Lympho-blastic Leukemia Reveals Genomic Deletion, Copy Number Neutral Loss of Heterozygosity, and Association with Spe-cific Cytogenetic Subgroups. Blood, 113, 100-107.
https://doi.org/10.1182/blood-2008-07-166801
[60]  Stanulla, M., Dagdan, E., Zaliova, M., M?ricke, A., Palmi, C., Cazzaniga, G., et al. (2018) IKZF1(plus) Defines a New Minimal Residual Disease-Dependent Very-Poor Prognostic Profile in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 36, 1240-1249.
https://doi.org/10.1200/JCO.2017.74.3617
[61]  Piovan, E., Yu, J.Y., Tosello, V., Herranz, D., Ambe-si-Impiombato, A., Carolina Da Silva, A., et al. (2013) Direct Reversal of Glucocorticoid Resistance by AKT Inhibition in Acute Lymphoblastic Leukemia. Cancer Cell, 24, 766-776.
https://doi.org/10.1016/j.ccr.2013.10.022
[62]  Shahjahani, M., Norozi, F., Ahmadzadeh, A., Shahrabi, S., Tavakoli, F., Asnafi, A.A., et al. (2015) The Role of Pax5 in Leukemia: Diagnosis and Prognosis Significance. Medical Oncology, 32, 360.
https://doi.org/10.1007/s12032-014-0360-6
[63]  Novakova, M., Zaliova, M., Fiser, K., Vakrmanova, B., Slamova, L., Musilova, A., et al. (2021) DUX4r, ZNF384r and PAX5-P80R Mutated B-Cell Precursor Acute Lymphoblastic Leukemia Frequently Undergo Monocytic Switch. Haematologica, 106, 2066-2075.
https://doi.org/10.3324/haematol.2020.250423
[64]  Li, J.F., Dai, Y.T., Wu, L., Zhang, M., Ouyang, W., Huang, J.Y., et al. (2021) Emerging Molecular Subtypes and Therapeutic Targets in B-Cell Precursor Acute Lymphoblastic Leu-kemia. Frontiers in Medicine, 15, 347-371.
https://doi.org/10.1007/s11684-020-0821-6
[65]  Zhang, W.H., Kuang, P. and Liu, T. (2019) Prognostic Signifi-cance of CDKN2A/B Deletions in Acute Lymphoblastic Leukaemia: A Meta-Analysis. Annals of Medicine, 51, 28-40.
https://doi.org/10.1080/07853890.2018.1564359
[66]  Agarwal, M., Bakhshi, S., Dwivedi, S.N., et al. (2018) Cy-clin Dependent Kinase Inhibitor 2A/B Gene Deletions Are Markers of Poor Prognosis in Indian Children with Acute Lymphoblastic Leukemia. Pediatric Blood & Cancer, 65, e27001.
https://doi.org/10.1002/pbc.27001
[67]  Kathiravan, M., Singh, M., Bhatia, P., Trehan, A., Varma, N., Sachdeva, M.S., et al. (2019) Deletion of CDKN2A/B Is Associated with Inferior Relapse Free Survival in Pediatric B Cell Acute Lymphoblastic Leukemia. Leukemia & Lymphoma, 60, 433-441.
https://doi.org/10.1080/10428194.2018.1482542
[68]  Karrman, K., Castor, A., Behrendtz, M., et al. (2015) Deep Sequencing and SNP Array Analyses of Pediatric T-Cell Acute Lymphoblastic Leukemia Reveal NOTCH1 Mutations in Minor Subclones and a High Incidence of Uniparental Isodisomies Affecting CDKN2A. Journal of Hematology Oncol-ogy, 8, 42.
https://doi.org/10.1186/s13045-015-0138-0
[69]  Steeghs, E.M.P., Boer, J.M., Hoogkamer, A.Q., Boeree, A., de Haas, V., de Groot-Kruseman, H.A., et al. (2019) Copy Number Alterations in B-Cell Development Genes, Drug Resistance, and Clinical Outcome in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. Scientific Reports, 9, 4634.
https://doi.org/10.1038/s41598-019-41078-4
[70]  Feng, J., Guo, Y., Yang, W.Y., Zou, Y., Zhang, L., Chen, Y.M., et al. (2022) Childhood Acute B-Lineage Lymphoblastic Leukemia with CDKN2A/B Deletion Is a Distinct Entity with Adverse Genetic Features and Poor Clinical Outcomes. Frontiers in Oncology, 12, Article ID: 878098.
https://doi.org/10.3389/fonc.2022.878098
[71]  Kim, M.Y., Yim, S.-H., Cho, N.-S., Kang, S.-H., Ko, D.-H., Oh, B., et al. (2009) Homozygous Deletion of CDKN2A (p16, p14) and CDKN2B (p15) Genes Is a Poor Prog-nostic Factor in Adult but Not in Childhood B-Lineage Acute Lymphoblastic Leukemia: A Comparative Deletion and Hypermethylation Study. Cancer Genetics and Cytogenetics, 195, 59-65.
https://doi.org/10.1016/j.cancergencyto.2009.06.013
[72]  Salas, P.C., Fernández, L., Vela, M., Bueno, D., Gonzá-lez, B., Valentín, J., et al. (2016) The Role of CDKN2A/B Deletions in Pediatric Acute Lymphoblastic Leukemia. Pediat-ric Hematology and Oncology, 33, 415-422.
https://doi.org/10.1080/08880018.2016.1251518
[73]  Sawai, C.M., Freund, J., Oh, P., Ndiaye-Lobry, D., Bretz, J.C, Strikoudis, A., et al. (2012) Therapeutic Targeting of the Cyclin D3:CDK4/6 Complex in T Cell Leukemia. Cancer Cell, 22, 452-465.
https://doi.org/10.1016/j.ccr.2012.09.016
[74]  Sheppard, K.E. and McArthur, G.A. (2013) The Cell-Cycle Regulator CDK4: An Emerging Therapeutic Target in Melanoma. Clinical Cancer Research, 19, 5320-5328.
https://doi.org/10.1158/1078-0432.CCR-13-0259
[75]  Dickson, M.A. (2014) Molecular Pathways: CDK4 Inhibi-tors for Cancer Therapy. Clinical Cancer Research, 20, 3379-3383.
https://doi.org/10.1158/1078-0432.CCR-13-1551

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133