|
人工智能在肝癌中的研究趋势:文献计量学分析
|
Abstract:
目的:通过文献计量学分析,对人工智能在肝癌中的相关研究进行了评估,探讨了2002~2021年的研究热点和现状。方法:2002~2021年期间,从Web of Science核心馆藏(WoSCC)中检索肝癌研究中人工智能相关的出版物。运用VOSviewer及Citespace进行文献计量分析,探讨了2002~2021年的研究热点和现状。结果:从WoSCC数据库中共检索到该领域的773篇出版物。2016年后,出版物数量快速增长。中国和中山大学分别是最具影响力的国家和机构。共调查关键词3339个,其中49个关键词出现次数超过20次。关键词被分为17个簇:#0表达,#1肝细胞癌,#2识别,#3智能神经网络,#4生物标志物发现,#5晚期肝细胞癌,#6肝细胞脂肪变,#7深度学习,#8结构分析,#9计算机辅助诊断,#10机器学习,#11协同作用,#12肝硬化,#13丙型肝炎,#14体外,#15肝质量,#16肝脏。结论:与AI相关的肝癌研究正处于发展阶段。目前,人工智能在肝癌的生物学、影像学、治疗及风险评估方面得到了广泛的研究。这项文献计量学分析展示了该领域研究的现状,并帮助研究人员确定了新的研究方向。
Purpose: We evaluated the related research on artificial intelligence in liver cancer (LC) through bibliometrics analysis and explored the research hotspots and current status from 2002 to 2021. Methods: Publications related to AI in LC were retrieved from the Web of Science Core Collection (WoSCC) during 2002~2021. VOSviewer and Citespace were used to bibliometrics analysis. Results: A total of 773 publications in the field were retrieved from the WoSCC database. After 2016, the number of publications increased rapidly. China and Sun Yat-sen University are the most influential countries and institutions, respectively. A total of 3339 keywords were investigated, among which 49 keywords appeared more than 20 times. Keywords are grouped into 17 clusters: #0 expression, #1 hepatocellular carcinoma, #2 recognition, #3 intelligent neural network, #4 Biomarker Discov-ery, #5 advanced hepatocellular carcinoma, #6 hepatocellular steatosis, #7 deep learning, #8 Structural analysis, #9 computer-aided diagnosis, #10 machine learning, #11 synergism, #12 cir-rhosis, #13 hepatitis C, #14 in vitro, #15 liver mass, #16 liver. Conclusion: Ai-related liver cancer research is in the developing stage. At present, artificial intelligence has been extensively studied in the biology, imaging, treatment and risk assessment of liver cancer. This bibliometric analysis shows the current state of research in this field and helps researchers identify new research direc-tions.
[1] | Li, X., Ramadori, P., Pfister, D., Seehawer, M., Zender, L. and Heikenwalder, M. (2021) The Immunological and Meta-bolic Landscape in Primary and Metastatic Liver Cancer. Nature Reviews Cancer, 21, 541-557.
https://doi.org/10.1038/s41568-021-00383-9 |
[2] | Siegel, R.L., Miller, K.D. and Jemal, A. (2019) Cancer Statistics, 2019. CA, 69, 7-34.
https://doi.org/10.3322/caac.21551 |
[3] | Bruix, J. and Sherman, M. (2011) Management of Hepatocellular Carci-noma: An Update. Hepatology, 53, 1020-1022.
https://doi.org/10.1002/hep.24199 |
[4] | Tsuchiya, N., Sawada, Y., Endo, I., et al. (2015) Biomarkers for the Early Diagnosis of Hepatocellular Carcinoma. World Journal of Gastroenterology, 21, 10573-10583. https://doi.org/10.3748/wjg.v21.i37.10573 |
[5] | Everhart, J.E. and Ruhl, C.E. (2009) Burden of Digestive Diseases in the United States Part III: Liver, Biliary Tract, and Pancreas. Gastroenterology, 136, 1134-1144. https://doi.org/10.1053/j.gastro.2009.02.038 |
[6] | Mao, B., Ma, J., Duan, S., Xia, Y., Tao, Y. and Zhang, L. (2021) Preoperative Classification of Primary and Metastatic Liver Cancer via Machine Learning-Based Ultrasound Radiomics. European Radiology, 31, 4576-486.
https://doi.org/10.1007/s00330-020-07562-6 |
[7] | Chen, B., Garmire, L., Calvisi, D.F., Chua, M.-S., Kelley, R.K. and Chen, X. (2020) Harnessing Big ‘Omics’ Data and AI for Drug Discovery in Hepatocellular Carcinoma. Nature Re-views Gastroenterology & Hepatology, 17, 238-251.
https://doi.org/10.1038/s41575-019-0240-9 |
[8] | Ji, G.W., Zhu, F.P., Xu, Q., et al. (2019) Machine-Learning Analysis of Contrast-Enhanced CT Radiomics Predicts Recurrence of Hepatocellular Carcinoma after Resection: A Mul-ti-Institutional Study. EBioMedicine, 50, 156-165.
https://doi.org/10.1016/j.ebiom.2019.10.057 |
[9] | Yu, Y., Li, Y., Zhang, Z., et al. (2020) A Bibliometric Analysis Using VOSViewer of Publications on COVID-19. Annals of Translational Medicine, 8, 816-826. https://doi.org/10.21037/atm-20-4235 |
[10] | Ozsoy, Z. and Demir, E. (2018) The Evolution of Bariatric Surgery Publications and Global Productivity: A Bibliometric Analysis. Obesity Surgery, 28, 1117-1129. https://doi.org/10.1007/s11695-017-2982-1 |
[11] | Murakami, Y., Yasuda, T., Saigo, K., Urashima, T., Toyoda, H., Okanoue, T. and Shimotohno, K. (2006) Comprehensive Analysis of microRNA Expression Patterns in Hepatocellular Carcinoma and Non-Tumorous Tissues. Oncogene, 25, 2537-2545. https://doi.org/10.1038/sj.onc.1209283 |
[12] | Li, X., Chen, H., Qi, X., et al. (2018) H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation from CT Volumes. IEEE Transactions on Medical Imaging, 37, 2663-2674.
https://doi.org/10.1109/TMI.2018.2845918 |
[13] | Chen, X., Yan, C.C., Zhang, X., et al. (2017) Long Non-Coding RNAs and Complex Diseases: from experimental results to computational models. Briefings in Bioinformatics, 18, 558-576. https://doi.org/10.1093/bib/bbw060 |
[14] | Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA, 68, 394-424. https://doi.org/10.3322/caac.21492 |
[15] | Gillies, R.J., Kinahan, P.E. and Hricak, H. (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278, 563-577. https://doi.org/10.1148/radiol.2015151169 |
[16] | Yasaka, K., Akai, H., Abe, O. and Kiryu, S. (2018) Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-Enhanced CT: A Prelimi-nary Study. Radiology, 286, 887-896.
https://doi.org/10.1148/radiol.2017170706 |
[17] | Torkamani, A., Andersen, K.G., Steinhubl, S.R. and Topol, E.J. (2017) High-Definition Medicine. Cell, 170, 828-843.
https://doi.org/10.1016/j.cell.2017.08.007 |
[18] | Patel, S.K., George, B. and Rai, V. (2020) Artificial Intelligence to Decode Cancer Mechanism: Beyond Patient Stratification for Precision Oncology. Frontiers in Pharmacology, 11, Arti-cle 1177. |
[19] | Chaudhary, K., Poirion, O.B., Lu, L. and Garmire, L.X. (2018) Deep Learning-Based Multi-Omics Inte-gration Robustly Predicts Survival in Liver Cancer. Clinical Cancer Research, 24, 1248-1259.
https://doi.org/10.1158/1078-0432.CCR-17-0853 |
[20] | Li, J., Wei, L., Zhang, X., et al. (2021) DISMIR: Deep Learning-Based Noninvasive Cancer Detection by Integrating DNA Sequence and Methylation Information of Individual Cell-Free DNA Reads. Briefings in Bioinformatics, 22, 1-19.
https://doi.org/10.1101/2021.01.12.426440 |
[21] | Schmauch, B., Herent, P., Jehanno, P., et al. (2019) Diagnosis of Focal Liver Lesions from Ultrasound Using Deep Learning. Diagnostic and Interventional Imaging, 100, 227-233. https://doi.org/10.1016/j.diii.2019.02.009 |
[22] | Yang, Q., Wei, J., Hao, X., et al. (2020) Improving B-Mode Ultra-sound Diagnostic Performance for Focal Liver Lesions Using Deep Learning: A Multicentre Study. EBioMedicine, 56, Article ID: 102777.
https://doi.org/10.1016/j.ebiom.2020.102777 |
[23] | Mokrane, F.Z., Lu, L., Vavasseur, A., et al. (2020) Radiomics Machine-Learning Signature for Diagnosis of Hepatocellular Carcinoma in Cirrhotic Patients with Indeterminate Liver Nodules. European Radiology, 30, 558-570.
https://doi.org/10.1007/s00330-019-06347-w |
[24] | Bobo, M.F., Bao, S., Huo, Y., et al. (2018) Fully Convolutional Neural Networks Improve Abdominal Organ Segmentation [J]. Proceedings of SPIE—The International Society for Op-tical Engineering, 10574-10586. |
[25] | Hamm, C.A., Wang, C.J., Savic, L.J., et al. (2019) Deep Learning for Liver Tu-mor Diagnosis Part I: Development of a Convolutional Neural Network Classifier for Multi-Phasic MRI. European Ra-diology, 29, 3338-3347.
https://doi.org/10.1007/s00330-019-06205-9 |
[26] | Zhen, S.H., Cheng, M., Tao, Y.B., et al. (2020) Deep Learning for Accurate Diagnosis of Liver Tumor Based on Magnetic Resonance Imaging and Clinical Data. Frontiers in Oncology, 10, Article 680.
https://doi.org/10.3389/fonc.2020.00680 |
[27] | Saillard, C., Schmauch, B., Laifa, O., et al. (2020) Predicting Surviv-al after Hepatocellular Carcinoma Resection Using Deep Learning on Histological Slides. Hepatology, 72, 2000-2013. https://doi.org/10.1002/hep.31207 |
[28] | Saito, A., Toyoda, H., Kobayashi, M., et al. (2021) Prediction of Early Re-currence of Hepatocellular Carcinoma after Resection Using Digital Pathology Images Assessed by Machine Learning. Modern Pathology, 34, 417-425.
https://doi.org/10.1038/s41379-020-00671-z |
[29] | Oezdemir, I., Wessner, C.E., Shaw, C., et al. (2020) Tumor Vascular Networks Depicted in Contrast-Enhanced Ultrasound Images as a Predictor for Transarterial Chemoemboliza-tion Treatment Response. Ultrasound in Medicine & Biology, 46, 2276-2286. https://doi.org/10.1016/j.ultrasmedbio.2020.05.010 |