|
ASAP1与FAK在肿瘤中的研究进展
|
Abstract:
肿瘤的发生机制复杂,而肿瘤的播散更是一个多方面参与的过程,其中细胞骨架的失调及细胞外基质的破坏、上皮间质转化(Epithelial-mesenchymal transition, EMT)扮演的角色至关重要。ASAP1 (Arf糖激化因子GTP酶活化蛋白)通过定位于细胞膜内外,调整细胞骨架,改变细胞极性,最终导致肿瘤转移。黏着斑激酶(Focal adhesion kinas, FAK)可以与ASAP1结合形成复合物,参与调节细胞外基质(Extracellular matrix, ECM)的成分,影响肿瘤细胞微环境及细胞骨架重组,从而促进肿瘤细胞的转移。本文简要回顾了两种蛋白在一些肿瘤中的表达及新进展,希望能在肿瘤诊断及治疗上提供参考。
The pathogenesis of tumor is complex, and the spread of tumor is a multi-faceted process, in which cytoskeletal disorders, destruction of extracellular matrix and epithelial interstitial transformation play crucial roles. ASAP1 (Arf glycoactivator GTPase activating protein) induces tumor metastasis by localizing inside and outside the cell membrane, modulating the cytoskeleton and changing cell polarity. FAK (adhesion spot kinase) can combine with ASAP1 to form a complex, which is involved in the regulation of extracellular matrix (ECM) components, influence tumor cell microenvironment and cytoskeletal recombination, and thus promote tumor cell metastasis. In this paper, the expres-sion of these two proteins in some tumors and their new development are reviewed, hoping to pro-vide reference for tumor diagnosis and treatment.
[1] | Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660 |
[2] | Brown, M.T., Andrade, J., Radhakrishna, H., et al. (1998) ASAP1, a Phospholipid-Dependent Arf GTPase-Activating Protein That Associates with and Is Phosphorylated by Src. Molecular and Cellular Biology, 18, 7038-7051.
https://doi.org/10.1128/MCB.18.12.7038 |
[3] | Li, X. and Wang, J. (2020) Mechanical Tumor Microenvironment and Transduction: Cytoskeleton Mediates Cancer Cell Invasion and Metastasis. International Journal of Biological Sci-ences, 16, 2014-2028.
https://doi.org/10.7150/ijbs.44943 |
[4] | Petit, V. and Thiery, J.-P. (2000) Focal Adhesions: Structure and Dynamics. Biology of the Cell, 92, 477-494.
https://doi.org/10.1016/S0248-4900(00)01101-1 |
[5] | Liu, Y., Loijens, J.C., Martin, K.H., Karginov, A.V. and Parsons, J.T. (2002) The Association of ASAP1, an ADP Ribosylation Factor-GTPase Activating Protein, with Focal Adhesion Kinase Contributes to the Process of Focal Adhesion Assembly. Molecular Biology of the Cell, 13, 2147-2156. https://doi.org/10.1091/mbc.e02-01-0018 |
[6] | Hashimoto, S., Hirose, M., Hashimoto, A., et al. (2006) Targeting AMAP1 and Cortactin Binding Bearing an Atypical Src Homology 3/Proline Interface for Prevention of Breast Cancer Invasion and Metastasis. Proceedings of the National Academy of Sciences of the United States of America, 103, 7036-7041. https://doi.org/10.1073/pnas.0509166103 |
[7] | Wang, K., Hu, Y.-B., Zhao, Y. and Ye, C. (2021) Long Non-Coding RNA ASAP1-IT1 Suppresses Ovarian Cancer Progression by Regulating Hippo/YAP Signaling. Interna-tional Journal of Molecular Medicine, 47, Article No. 44.
https://doi.org/10.3892/ijmm.2021.4877 |
[8] | Royer, C. and Lu, X. (2011) Epithelial Cell Polarity: A Major Gate-keeper against Cancer? Cell Death & Differentiation, 18, 1470-1477. https://doi.org/10.1038/cdd.2011.60 |
[9] | Vitali, T., Girald-Berlingeri, S., Randazzo, P.A. and Chen, P.-W. (2019) Arf GAPs: A Family of Proteins with Disparate Functions That Converge on a Common Structure, the Integrin Adhe-sion Complex. Small GTPase, 10, 280-288. |
[10] | Chen, P.-W., Billington, N., Maron, B.Y., et al. (2020) The BAR Domain of the Arf GTPase-Activating Protein ASAP1 Directly Binds Actin Filaments. Journal of Biological Chemistry, 295, 11303-11315.
https://doi.org/10.1074/jbc.RA119.009903 |
[11] | Müller, T., Stein, U., Poletti, A., et al. (2010) ASAP1 Promotes Tumor Cell Motility and Invasiveness, Stimulates Metastasis Formation in Vivo, and Correlates with Poor Survival in Colorectal Cancer Patients. Oncogene, 29, 2393-2403.
https://doi.org/10.1038/onc.2010.6 |
[12] | Li, M., Tian, L., Yao, H., et al. (2014) ASAP1 Mediates the Invasive Phenotype of Human Laryngeal Squamous Cell Carcinoma to Affect Survival Prognosis. Oncology Reports, 31, 2676-2682. https://doi.org/10.3892/or.2014.3150 |
[13] | Guo, L., Zhou, Y., Chen, Y., et al. (2018) LncRNA ASAP1-IT1 Positively Modulates the Development of Cholangiocarcinoma via Hedgehog Signaling Pathway. Biomedi-cine & Pharmacotherapy, 103, 167-173.
https://doi.org/10.1016/j.biopha.2018.04.015 |
[14] | Bang, S., Jee, S., Son, H., et al. (2022) Clinicopathological Im-plications of ASAP1 Expression in Hepatocellular Carcinoma. Pathology and Oncology Research, 28, Article ID: 1610635. https://doi.org/10.3389/pore.2022.1610635 |
[15] | 姜娜娜. ASAP1在甲状腺乳头状癌细胞自噬中的作用及其机制[D]: [硕士学位论文]. 郑州: 郑州大学, 2020. |
[16] | 罗琼. ASAP1基因对胃癌恶性生物学行为影响及其机制研究[D]: [硕士学位论文]. 福州: 福建医科大学, 2020. |
[17] | Hashimoto, A., Handa, H., Hata, S., et al. (2021) Inhibition of Mutant KRAS-Driven Overexpression of ARF6 and MYC by an eIF4A Inhibitor Drug Improves the Ef-fects of Anti-PD-1 Immunotherapy for Pancreatic Cancer. Cell Communication and Signaling, 19, Article No. 54. https://doi.org/10.1186/s12964-021-00733-y |
[18] | Gowrikumar, S., Primeaux, M., Pravoverov, K., et al. (2021) A Claudin-Based Molecular Signature Identifies High-Risk, Chemoresistant Colorectal Cancer Patients. Cells, 10, Article No. 2211.
https://doi.org/10.3390/cells10092211 |
[19] | Golubovskaya, VM. (2014) Targeting FAK in Human Cancer: From Finding to First Clinical Trials. Frontiers in Bioscience-Landmark, 19, 687-706. https://doi.org/10.2741/4236 |
[20] | Huo, X., Zhang, W., Zhao, G., et al. (2022) FAK PROTAC Inhibits Ovarian Tumor Growth and Metastasis by Disrupting Kinase Dependent and Independent Pathways. Frontiers in Oncology, 12, Article 851065.
https://doi.org/10.3389/fonc.2022.851065 |
[21] | Zhang, Z., Li, J., Jiao, S., Han, G., Zhu, J. and Liu, T. (2022) Func-tional and Clinical Characteristics of Focal Adhesion Kinases in Cancer Progression. Frontiers in Cell and Developmen-tal Biology, 10, Article 1040311.
https://doi.org/10.3389/fcell.2022.1040311 |
[22] | Chuang, H.-H., Zhen, Y.-Y., Tsai, Y.-C., Chuang, C.-H., Hsiao, M., Huang, M.-S. and Yang, C.-J. (2022) FAK in Cancer: From Mechanisms to Therapeutic Strategies. International Journal of Molecular Sciences, 23, Article No. 1726. https://doi.org/10.3390/ijms23031726 |
[23] | Plaza-Menacho, I., Morandi, A., Mologni, L., Boender, P., Gambacorti-Passerini, C., Magee, A.I., Hofstra, R.M., Knowles, P., McDonald, N.Q. and Isacke, C.M. (2011) Focal Adhesion Kinase (FAK) Binds RET Kinase via Its FERM Domain, Priming a Direct and Reciprocal RET-FAK Transactivation Mechanism. Journal of Biological Chemistry, 286, 17292-17302. https://doi.org/10.1074/jbc.M110.168500 |
[24] | Mishra, Y.G. and Manavathi, B. (2021) Focal Adhesion Dynamics in Cellular Function and Disease. Cellular Signalling, 85, Article ID: 110046. https://doi.org/10.1016/j.cellsig.2021.110046 |
[25] | Ma, J., Huang, W., Zhu, C., et al. (2021) MiR-423-3p Activates FAK Signaling Pathway to Drive EMT Process and Tumor Growth in Lung Adenocarcinoma through Targeting CYBRD1. Journal of Clinical Laboratory Analysis, 35, e24044. https://doi.org/10.1002/jcla.24044 |
[26] | Banyard, J. and Bielenberg, D.R. (2015) The Role of EMT and MET in Cancer Dissemination. Connective Tissue Research, 56, 403-413. https://doi.org/10.3109/03008207.2015.1060970 |
[27] | Lamouille, S., Xu, J. and Derynck, R. (2014) Mo-lecular Mechanisms of Epithelial-Mesenchymal Transition. Nature Reviews Molecular Cell Biology, 15, 178-196. https://doi.org/10.1038/nrm3758 |
[28] | Huang, K., Gao, N., Bian, D., et al. (2020) Correlation between FAK and EGF-Induced EMT in Colorectal Cancer Cells. Journal of Oncology, 2020, Article ID: 5428920. https://doi.org/10.1155/2020/5428920 |
[29] | Wang, N. and Chang, L.-L. (2020) Maspin Suppresses Cell Invasion and Migration in Gastric Cancer through Inhibiting EMT and Angiogenesis via ITGB1/FAK pathway. Human Cell, 33, 663-675.
https://doi.org/10.1007/s13577-020-00345-7 |
[30] | Peng, Y.-S., Syu, J.-P., Wang, S.-D., Pan, P.-C. and Kung, H.-N. (2020) BSA-Bounded p-Cresyl Sulfate Potentiates the Malignancy of Bladder Carcinoma by Triggering Cell Mi-gration and EMT through the ROS/Src/FAK Signaling Pathway. Cell Biology and Toxicology, 36, 287-300. https://doi.org/10.1007/s10565-019-09509-0 |
[31] | Zhou, J., Yi, Q. and Tang, L. (2019) The Roles of Nuclear Focal Adhesion Kinase (FAK) on Cancer: A Focused Review. Journal of Experimental & Clinical Cancer Research, 38, Arti-cle No. 250.
https://doi.org/10.1186/s13046-019-1265-1 |
[32] | Li, H., Gao, Y. and Ren, C. (2021) Focal Adhesion Kinase Inhib-itor BI 853520 Inhibits Cell Proliferation, Migration and EMT Process through PI3K/AKT/mTOR Signaling Pathway in Ovarian Cancer. Discover Oncology, 12, Article No. 29. https://doi.org/10.1007/s12672-021-00425-6 |
[33] | Shiau, J.-P., Wu, C.-C., Chang, S.-J., Pan, M.-R., Liu, W., Ou-Yang, F., Chen, F.-M., Hou, M.-F., Shih, S.-L. and Luo, C.-W. (2021) FAK Regulates VEGFR2 Expression and Promotes Angiogenesis in Triple-Negative Breast Cancer. Biomedi-cines, 9, Article No. 1789. https://doi.org/10.3390/biomedicines9121789 |
[34] | Chen, X.L., Nam, J.O., Jean, C., Lawson, C., Walsh, C.T., Goka, E., Lim, S.-T., Tomar, A., Tancioni, I., Uryu, S., Guan, J.-L., Acevedo, L.M., Weis, S.M., Cheresh, D.A. and Schlaepfer, D.D. (2012) VEGF-Induced Vascular Permeability Is Mediated by FAK. Devel-opmental Cell, 22, 146-157. https://doi.org/10.1016/j.devcel.2011.11.002 |
[35] | Paul, R., Luo, M., Mo, X., Lu, J., Yeo, S.K. and Guan, J.L. (2020) FAK Activates AKT-mTOR Signaling to Promote the Growth and Progression of MMTV-Wnt1-Driven Basal-Like Mammary Tumors. Breast Cancer Research, 22, Article No. 59. https://doi.org/10.1186/s13058-020-01298-3 |
[36] | Tanna, C.E., Goss, L.B., Ludwig, C.G. and Chen, P.-W. (2019) Arf GAPs as Regulators of the Actin Cytoskeleton—An Update. International Journal of Molecular Sciences, 20, Arti-cle No. 442.
https://doi.org/10.3390/ijms20020442 Wang, B., Li, H., Zhao, X., et al. (2021) A Luminacin D Analog HL142 Inhibits Ovarian Tumor Growth and Metastasis by Reversing EMT and Attenuating the TGFβ and FAK Pathways. Journal of Cancer, 12, 5654-5663. https://doi.org/10.7150/jca.61066 |
[37] | Mohanty, A., Pharaon, R.R., Nam, A., et al. (2020) FAK-Targeted and Combination Therapies for the Treatment of Cancer: An Overview of Phase I and II Clinical Trials. Expert Opinion on Investigational Drugs, 29, 399-409.
https://doi.org/10.1080/13543784.2020.1740680 |
[38] | Castro-Guijarro, A.C., Vanderhoeven, F., Mondaca, J.M., et al. (2022) Combination Treatment of Retinoic Acid plus Focal Adhesion Kinase Inhibitor Prevents Tumor Growth and Breast Cancer Cell Metastasis. Cells, 11, Article No. 2988. https://doi.org/10.3390/cells11192988 |