全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

胰高血糖素样肽-1与主动脉瓣钙化机制研究进展
Research Progress on Mechanism of Glucagon-Like Peptide-1 and Aortic Valve Calcification

DOI: 10.12677/ACM.2023.134905, PP. 6439-6449

Keywords: 主动脉瓣钙化,胰高血糖素样肽-1,糖脂代谢,炎性反应,肠道菌群紊乱,分子生物学,机制
Aortic Valve Calcification
, Glucagon-Like Peptide-1, Glucose and Lipid Metabolism, Inflammatory Response, Intestinal Flora Disorder, Molecular Biology, Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

主动脉瓣钙化(Aortic valve calcification, AVC)是一种进行性的纤维钙化瓣膜增厚和心室功能障碍的慢性疾病,目前尚无特效治疗,瓣膜置换术、经导管主动脉瓣人工瓣膜植入术、经皮主动脉瓣球囊瓣膜成形术等可缓解症状。胰高血糖素样肽-1 (glucagon-like peptide-1, GLP-1)参与了瓣膜钙化相关机制各个方面,如糖脂代谢、炎性反应、肠道菌群紊乱、分子生物学改变。本文综述了GLP-1与主动脉瓣钙化机制的相关性,为临床抑制及减慢主动脉瓣钙化进程提供新的思路。
Aortic valve calcification (AVC) is a chronic disease of progressive fibrous calcified valve thickening and ventricular dysfunction. At present, there is no specific treatment, and valve replacement, transcatheter aortic valve prosthesis implantation, and percutaneous balloon aortic valvuloplasty can relieve symptoms. Glucagon-like peptide-1 (GLP-1) is involved in various aspects of valve calci-fication related mechanisms, such as glucose and lipid metabolism, inflammatory response, intes-tinal flora disorder, and molecular biological changes. This article reviews the correlation between GLP-1 and the mechanism of aortic valve calcification, so as to provide new ideas for clinical inhibi-tion and slow down the process of aortic valve calcification.

References

[1]  Chen, Z.Y., Gordillo-Martinez, F., Jiang, L., et al. (2021) Zinc Ameliorates Human Aortic Valve Calcification through GPR39 Mediated ERK1/2 Signalling Pathway. Cardiovascular Researches, 117, 820-835.
https://doi.org/10.1093/cvr/cvaa090
[2]  Rodriguez-Gabella, T., Voisine, P., Puri, R., Pibarot, P. and Rodes-Cabau, J. (2017) Aortic Bioprosthetic Valve Durability: Incidence, Mechanisms, Predictors, and Management of Surgical and Transcatheter Valve Degeneration. Journal of the American College of Cardiology, 70, 1013-1028.
https://doi.org/10.1016/j.jacc.2017.07.715
[3]  Kossar, A.P., Wanda, A., Grau, J.B., et al. (2020) Circulating and Tissue Matricellular RNA and Protein Expression in Calcific Aortic Valve Disease. Physiological Genomics, 52, 191-199.
https://doi.org/10.1152/physiolgenomics.00104.2019
[4]  Natarajan, B., Aaron, W. and Pushpa, P. (2015) Th17 Inflammation Model of Oropharyngeal Candidiasis in Immunodeficient Mice. Journal of Visualized Experiments, No. 96, Arttcle 52538.
[5]  Villa-Bellosta, R. (2021) Vascular Calcification: Key Roles of Phosphate and Pyrophosphate. Inter-national Journal of Molecular Sciences, 22, Article 13536.
https://doi.org/10.3390/ijms222413536
[6]  Lu, W.T., Hynek, P., Abdonas, T., et al. (2022) Prevalence, Awareness, Treatment and Control of Hypertension, Diabetes and Hy-percholesterolemia, and Associated Risk Factors in the Czech Republic, Russia, Poland and Lithuania: a Cross-Sectional Study. BMC Public Health, 22, Article No. 883.
https://doi.org/10.1186/s12889-022-13260-3
[7]  Liu, Z.H., Li, J.Y., Liu, H.Y., et al. (2019) The Intestinal Microbiota Associated with Cardiac Valve Calcification Differs from that of Coronary Artery Disease. Atherosclerosis, 284, 121-128.
https://doi.org/10.1016/j.atherosclerosis.2018.11.038
[8]  Song, R., Fullerton, D.A., Ao, L., et al. (2017) Altered MicroRNA Expression Is Responsible for the Pro-Osteogenic Phenotype of Interstitial Cells in Calcified Human Aortic Valves. Journal of the American Heart Association, 6, e005364.
https://doi.org/10.1161/JAHA.116.005364
[9]  Juul, H.J. (2007) The Physiology of Glucagon-Like Peptide 1. Physiological Reviews, 87, 1409-1439.
https://doi.org/10.1152/physrev.00034.2006
[10]  Charles, P., Scott, H.R., Kirk, R.K., et al. (2014) GLP-1 Receptor Localization in Monkey and Human Tissue: Novel Distribution Revealed with Extensively Validated Monoclonal Anti-body. Endocrinology, 155, 1280-1290.
https://doi.org/10.1210/en.2013-1934
[11]  Chen, Y., Xu, Y.N., Ye, C.Y., et al. (2022) GLP-1 Mimetics as a Po-tential Therapy for Nonalcoholic Steatohepatitis. Acta Pharmacologica Sinica, 43, 1156-1166.
https://doi.org/10.1038/s41401-021-00836-9
[12]  Saraiva, J.F.K. and Franco, D. (2021) Oral GLP-1 Analogue: Perspectives and Impact on Atherosclerosis in Type 2 Diabetic Patients. Cardiovascular Diabetology, 20, Article No. 235.
https://doi.org/10.1186/s12933-021-01417-0
[13]  Baggio, L.L., Yusta, B., Mulvihill, E.E., et al. (2018) GLP-1 Receptor Expression within the Human Heart. Endocrinology, 159, 1570-1584.
https://doi.org/10.1210/en.2018-00004
[14]  Drucker, D.J. (2002) Biological Actions and Therapeutic Potential of the Glucagon-Like Peptides. Gastroenterology, 122, 531-544.
https://doi.org/10.1053/gast.2002.31068
[15]  Duan, L.H., Rao, X.Q., Braunstein, Z., et al. (2017) Role of Incretin Axis in Inflammatory Bowel Disease. Frontiers in Immu-nology, 8, Article 1734.
https://doi.org/10.3389/fimmu.2017.01734
[16]  Drucker, D.J. (2018) Mechanisms of Ac-tion and Therapeutic Application of Glucagon-Like Peptide-1. Cell Metabolism, 27, 740-756.
https://doi.org/10.1016/j.cmet.2018.03.001
[17]  Müller, T.D., Finan, B., Bloom, S.R., et al. (2019) Glucagon-Like Peptide 1 (GLP-1). Molecular Metabolism, 30, 72-130.
https://doi.org/10.1016/j.molmet.2019.09.010
[18]  Sandoval, D. (2008) CNS GLP-1 Regulation of Peripheral Glucose Homeostasis. Physiology & Behavior, 94, 670-674.
https://doi.org/10.1016/j.physbeh.2008.04.018
[19]  Burmeister, M.A., Brown, J.D., Ayala, J.E., et al. (2017) The Glucagon-Like Peptide-1 Receptor in the Ventromedial Hypothalamus Reduces Short-Term Food Intake in Male Mice by Regulating Nutrient Sensor Activity. The American Journal of Physiology-Endocrinology and Metabolism, 313, E651-E662.
https://doi.org/10.1152/ajpendo.00113.2017
[20]  Alessia, C., Minrong, A., Nicolas, N., et al. (2022) Anorectic and Aversive Effects of GLP-1 Receptor Agonism Are Mediated by Brainstem Cholecystokinin Neurons, and Modulated by GIP Receptor Activation. Molecular Metabolism, 55, Article 101407.
https://doi.org/10.1016/j.molmet.2021.101407
[21]  Gribble, F.M. and Reimann, F. (2019) Function and Mecha-nisms of Enteroendocrine Cells and Gut Hormones in Metabolism. Nature Reviews Endocrinology, 15, 226-237.
https://doi.org/10.1038/s41574-019-0168-8
[22]  Qu, L., Matz, A.J., Karlinsey, K., Cao, Z., Vella, A.T. and Zhou, B. (2022) Macrophages at the Crossroad of Meta-Inflammation and Inflammaging. Genes, 13, Article 2074.
https://doi.org/10.3390/genes13112074
[23]  Moro-García, M.A., Mayo, J.C., Sainz, R.M. and Alonso-Arias, R. (2018) Influence of Inflammation in the Process of T Lymphocyte Differentiation: Proliferative, Metabolic, and Oxidative Changes. Frontiers in Immunology, 9, Article 339.
https://doi.org/10.3389/fimmu.2018.00339
[24]  Daisuke, S., Yukio, F., Yoshihiro, K., et al. (2012) Glucagon-Like Peptide-1 (GLP-1) Induces M2 Polarization of Human Macro-phages via STAT3 Activation. Biochemical and Biophysical Research Communications, 425, 304-308.
https://doi.org/10.1016/j.bbrc.2012.07.086
[25]  Lumeng, C.N., Bodzin, J.L. and Saltiel, A.R. (2007) Obesity In-duces a Phenotypic Switch in Adipose Tissue Macrophage Polarization. The Journal of Clinical Investigation, 117, 175-184.
https://doi.org/10.1172/JCI29881
[26]  Shiho, F., Isao, U., Agussalim, B., et al. (2009) Regulatory Mechanisms for Adipose Tissue M1 and M2 Macrophages in Diet-Induced Obese Mice. Diabetes, 58, 2574-2582.
https://doi.org/10.2337/db08-1475
[27]  ángela, V., Jorge, N., Herrero-Cervera, A., et al. (2017) The GLP-1 Ana-logue Lixisenatide Decreases Atherosclerosis in Insulin-Resistant Mice by Modulating Macrophage Phenotype. Dia-betologia, 60, 1801-1812.
https://doi.org/10.1007/s00125-017-4330-3
[28]  Zubair, S., Thomas, K., Deiuliis, J.A., et al. (2011) Long-Term Dipeptidyl-Peptidase 4 Inhibition Reduces Atherosclerosis and Inflammation via Effects on Monocyte Recruitment and Chemotaxis. Circulation, 124, 2338-2349.
https://doi.org/10.1161/CIRCULATIONAHA.111.041418
[29]  Noritaka, S., Kei, A., Nakamura, N., et al. (2020) Glucagon-Like Peptide-1 Receptor Agonist Liraglutide Ameliorates the Development of Periodontitis. Journal of Diabe-tes Research, 2020, Article ID: 8843310.
https://doi.org/10.1155/2020/8843310
[30]  Mitchell, P.D., Salter, B.M., Oliveria, J.P., et al. (2017) Glucagon-Like Peptide-1 Receptor Expression on Human Eosinophils and Its Regulation of Eosinophil Activation. Clinical & Experi-mental Allergy, 47, 331-338.
https://doi.org/10.1111/cea.12860
[31]  Su, Y.F., Liu, N., Zhang, Z.J., et al. (2022) Cholecystokinin and Gluca-gon-Like Peptide-1 Analogues Regulate Intestinal Tight Junction, Inflammation, Dopaminergic Neurons and α-Synuclein Accumulation in the Colon of Two Parkinson’s Disease Mouse Models. European Journal of Pharmacology, 926, Arti-cle 175029.
https://doi.org/10.1016/j.ejphar.2022.175029
[32]  Toki, S., Newcomb, D.C., Printz, R.L., Cahill, K.N., Boyd, K.L., Niswender, K.D. and Peebles Jr., R.S. (2021) Glucagon-Like Peptide-1 Receptor Agonist Inhibits Aeroallergen-Induced Activation of ILC2 and Neutrophilic Airway Inflammation in Obese Mice. Allergy, 76, 3433-3445.
https://doi.org/10.1111/all.14879
[33]  Shan, Y., Tan, S., Lin, Y., Liao, S., Zhang, B., Chen, X., Wang, J., Deng, Z., Zeng, Q., Zhang, L., Wang, Y., Hu, X., Qiu, W., Peng, L. and Lu, Z. (2019) The Glucagon-Like Peptide-1 Receptor Agonist Reduces Inflammation and Blood-Brain Barrier Breakdown in an Astrocyte-Dependent Manner in Experimental Stroke. Journal of Neuroinflammation, 16, Article No. 242.
https://doi.org/10.1186/s12974-019-1638-6
[34]  Kamiya, M., Mizoguchi, F. and Yasuda, S. (2022) Amelioration of Inflammatory Myopathies by Glucagon-Like Peptide-1 Receptor Agonist via Suppressing Muscle Fibre Necroptosis. Journal of Cachexia, Sarcopenia and Muscle, 13, 2118-2131.
https://doi.org/10.1002/jcsm.13025
[35]  Sun, M., Wu, X., Yu, Y., Wang, L., Xie, D., Zhang, Z., Chen, L., Lu, A., Zhang, G. and Li, F. (2020) Disorders of Calcium and Phosphorus Metabolism and the Proteomics/Metabolomics-Based Research. Frontiers in Cell and Developmental Biolo-gy, 8, Article 576110.
https://doi.org/10.3389/fcell.2020.576110
[36]  Chen, K., Wu, R., Mo, B., Yan, X., Shen, D. and Chen, M. (2021) Comparison between Liraglutide Alone and Liraglutide in Combination with Insulin on Osteopo-rotic Rats and Their Effect on Bone Mineral Density. Journal of Musculoskeletal and Neuronal Interactions, 21, 142-148.
[37]  Trautvetter, U. and Jahreis, G. (2014) Effect of Supplementary Calcium Phosphate on Plasma Gastroin-testinal Hormones in a Double-Blind, Placebo-Controlled, Cross-Over Human Study. British Journal of Nutrition, 111, 287-293.
https://doi.org/10.1017/S0007114513002341
[38]  Zhang, S., Lachance, B.B., Mattson, M.P. and Jia, X. (2021) Glucose Metabolic Crosstalk and Regulation in Brain Function and Diseases. Progress in Neurobiology, 204, Article 102089.
https://doi.org/10.1016/j.pneurobio.2021.102089
[39]  Segatto, M., Cutone, A. and Pallottini, V. (2022) Fat Check-ing: Emerging Role of Lipids in Metabolism and Disease. International Journal of Molecular Sciences, 23, Article 13842.
https://doi.org/10.3390/ijms232213842
[40]  Muscella, A., Stefàno, E., Lunetti, P., Capobianco, L. and Marsigliante, S. (2020) The Regulation of Fat Metabolism During Aerobic Exercise. Biomolecules, 10, Article 1699.
https://doi.org/10.3390/biom10121699
[41]  Quarta, C., Stemmer, K., Novikoff, A., Yang, B., Klingelhuber, F., Harger, A., Bakhti, M., Bastidas-Ponce, A., Baugé, E., Campbell, J.E., Capozzi, M., Clemmensen, C., Collden, G., Cota, P., Douros, J., Drucker, D.J., DuBois, B., Feuchtinger, A., Garcia-Caceres, C., Grandl, G., Hennuyer, N., Herzig, S., Hofmann, S.M., Knerr, P.J., Kulaj, K., Lalloyer, F., Lickert, H., Liskiewicz, A., Liskiewicz, D., Maity, G., Perez-Tilve, D., Prakash, S., Sanchez-Garrido, M.A., Zhang, Q., Staels, B., Krahmer, N., DiMarchi, R.D., Tsch?p, M.H., Finan, B. and Müller, T.D. (2022) GLP-1-Mediated Delivery of Tesaglitazar Improves Obesity and Glucose Metabolism in Male Mice. Nature Metabolism, 4, 1071-1083.
https://doi.org/10.1038/s42255-022-00617-6
[42]  Lyseng-Williamson, K.A. (2019) Glucagon-Like Peptide-1 Re-ceptor Analogues in Type 2 Diabetes: Their Use and Differential Features. Clinical Drug Investigation, 39, 805-819.
https://doi.org/10.1007/s40261-019-00826-0
[43]  Timper, K., Del Río-Martín, A., Cremer, A.L., Bremser, S., Al-ber, J., Giavalisco, P., Varela, L., Heilinger, C., Nolte, H., Trifunovic, A., Horvath, T.L., Kloppenburg, P., Backes, H. and Brüning, J.C. (2020) GLP-1 Receptor Signaling in Astrocytes Regulates Fatty Acid Oxidation, Mitochondrial Integ-rity, and Function. Cell Metabolism, 31, 1189-1205.
https://doi.org/10.1016/j.cmet.2020.05.001
[44]  Eckburg, P.B., Bik, E.M., Bernstein, C.N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S.R., Nelson, K.E. and Relman, D.A. (2005) Diversity of the Human Intestinal Microbial Flora. Science, 308, 1635-1638.
https://doi.org/10.1126/science.1110591
[45]  Jin, M., Qian, Z., Yin, J., Xu, W. and Zhou, X. (2019) The Role of Intestinal Microbiota in Cardiovascular Disease. Journal of Cellular and Molecular Medicine, 23, 2343-2350.
https://doi.org/10.1111/jcmm.14195
[46]  Ma, Y., You, X., Mai, G., Tokuyasu, T. and Liu, C. (2018) A Human Gut Phage Catalog Correlates the Gut Phageome with Type 2 Diabetes. Microbiome, 6, Article No. 24.
https://doi.org/10.1186/s40168-018-0410-y
[47]  Zhang, J.M., Sun, Y.S., Zhao, L.Q., Chen, T.T., Fan, M.N., Jiao, H.C., Zhao, J.P., Wang, X.J., Li, F.C., Li, H.F. and Lin, H. (2019) SCFAs-Induced GLP-1 Secretion Links the Regula-tion of Gut Microbiome on Hepatic Lipogenesis in Chickens. Frontiers in Microbiology, 10, Article 2176.
https://doi.org/10.3389/fmicb.2019.02176
[48]  Kato, S., Sato, T., Fujita, H., Kawatani, M. and Yamada, Y. (2021) Effects of GLP-1 Receptor Agonist on Changes in the Gut Bacterium and the Underlying Mechanisms. Scientific Reports, 11, Article No. 9167.
https://doi.org/10.1038/s41598-021-88612-x
[49]  Chen, L., Heikkinen, L., Wang, C., Yang, Y., Sun, H. and Wong, G. (2019) Trends in the Development of miRNA Bioinformatics Tools. Briefings in Bioinformatics, 20, 1836-1852.
[50]  王卫杰, 刘新颖, 赵文爱, 李泽民. 视蛋白[J]. 生命的化学, 2009, 29(3): 440-443.
[51]  Feuda, R., Menon, A.K. and G?pfert, M.C. (2022) Rethinking Opsins. Molecular Biology and Evolution, 39, msac033.
https://doi.org/10.1093/molbev/msac033
[52]  田壮, 汪雕雕, 张矗, 李汉臣, 周建, 姚琦. 骨形态发生蛋白2间接调控骨细胞骨硬化蛋白基因表达的机制[J]. 中国组织工程研究, 2022, 26(11): 1686-1691.
[53]  Mohler III, E.R., et al. (2001) Bone Formation and Inflammation in Cardiac Valves. Circulation, 103, 1522-1528.
https://doi.org/10.1161/01.CIR.103.11.1522
[54]  Demer, L.L., et al. (1994) Mechanism of Calcification in Athero-sclerosis. Trends in Cardiovascular Medicine, 4, 45-49.
https://doi.org/10.1016/1050-1738(94)90025-6
[55]  David, L., et al. (2009) Emerging role of Bone Morphogenetic Proteins in Angiogenesis. Cytokine & Growth Factor Reviews, 20, 203-212.
https://doi.org/10.1016/j.cytogfr.2009.05.001
[56]  Capuani, B., Pacifici, F., Della-Morte, D. and Lauro, D. (2018) Glucagon Like Peptide 1 and MicroRNA in Metabolic Diseases: Focusing on GLP1 Action on miRNAs. Frontiers in Endocrinology, 9, Article 719.
https://doi.org/10.3389/fendo.2018.00719
[57]  MacDonald, P.E., El-Kholy, W., Riedel, M.J., Salapatek, A.M., Light, P.E. and Wheeler, M.B. (2002) The Multiple Actions of GLP-1 on the Process of Glucose-Stimulated Insulin Se-cretion. Diabetes, 3, S434-S442.
https://doi.org/10.2337/diabetes.51.2007.S434
[58]  Shang, J., Li, J., Keller, M.P., Hohmeier, H.E., Wang, Y., Feng, Y., Zhou, H.H., Shen, X., Rabaglia, M., Soni, M., Attie, A.D., Newgard, C.B., Thornberry, N.A., Howard, A.D. and Zhou, Y.P. (2015) Induction of miR-132 and miR-212 Expression by Glucagon-Like Peptide 1 (GLP-1) in Rodent and Human Pancreatic β-Cells. Molecular Endocrinology, 29, 1243-1253.
https://doi.org/10.1210/me.2014-1335
[59]  Wei, J., Ding, D., Wang, T., Liu, Q. and Lin, Y. (2017) MiR-338 Con-trols BPA-Triggered Pancreatic Islet Insulin Secretory Dysfunction from Compensation to Decompensation by Targeting Pdx-1. The FASEB Journal, 31, 5184-5195.
https://doi.org/10.1096/fj.201700282R
[60]  Hebsgaard, J.B., Pyke, C., Yildirim, E., Knudsen, L.B., Heegaard, S. and Kvist, P.H. (2018) Glucagon-Like Peptide-1 Receptor Expression in the Human Eye. Diabetes, Obesity and Metabo-lism, 20, 2304-2308.
https://doi.org/10.1111/dom.13339
[61]  聂元鹏, 何学敏, 陈燕铭. 胰高血糖素样肽1受体激动剂在糖尿病视网膜病变中的应用进展[J]. 中国实用内科杂志, 2020, 40(11): 947-951.
[62]  Takada, I., Kouzmenko, A.P. and Kato, S. (2010) PPAR-Gamma Signaling Crosstalk in Mesenchymal Stem Cells. PPAR Research, 2010, Article ID: 341671.
[63]  丁海璇, 李铁力, 田园, 杨丽. 胰高血糖素样肽-1在骨质疏松症中的影响及作用机制的研究进展[J]. 中国骨质疏松杂志, 2022, 28(9): 1379-1384.
[64]  王婷, 董进. 胰高血糖素样肽-1类似物对人成骨细胞Wnt信号通路相关基因表达的影响[J]. 中国骨质疏松杂志, 2013, 19(6): 580-583.
[65]  Drucker, D.J. (2022) GLP-1 Physiology Informs the Pharmacotherapy of Obesity. Molecular Metabolism, 57, Article 101351.
https://doi.org/10.1016/j.molmet.2021.101351
[66]  Liao, E.P. (2012) Management of Type 2 Diabetes: New and Future Developments in Treatment. The American Journal of Medicine. 125, S2-S3.
https://doi.org/10.1016/j.amjmed.2012.05.008
[67]  Li, Y., Perry, T., Kindy, M.S., Harvey, B.K., Tweedie, D., Holloway, H.W., Powers, K., Shen, H., Egan, J.M., Sambamurti, K., Brossi, A., Lahiri, D.K., Mattson, M.P., Hoffer, B.J., Wang, Y. and Greig, N.H. (2009) GLP-1 Receptor Stimulation Preserves Primary Cortical and Dopaminergic Neu-rons in Cellular and Rodent Models of Stroke and Parkinsonism. The Proceedings of the National Academy of Sciences, 106, 1285-1290.
https://doi.org/10.1073/pnas.0806720106
[68]  Xiao, F., Zha, Q., Zhang, Q., Wu, Q., Chen, Z., Yang, Y., Yang, K. and Liu, Y. (2021) Decreased Glucagon-Like Peptide-1 Is Associated with Calcific Aortic Valve Disease: GLP-1 Sup-presses the Calcification of Aortic Valve Interstitial Cells. Frontiers in Cardiovascular Medicine, 8, Article 709741.
https://doi.org/10.3389/fcvm.2021.709741
[69]  查晴, 肖凡, 张倩茹, 叶佳雯, 张煜, 杨玲, 杨克, 刘艳. 主动脉瓣膜钙化中胰高血糖素样肽-1对Notch1-Sox9信号通路的调控作用[J]. 国际心血管病杂志, 2021, 48(6): 370-375+379.
[70]  国家统计局. 第七次全国人口普查公报(第五号)——人口年龄构成情况[J]. 中国统计, 2021(5): 10-11.
[71]  Coffey, S., d’Arcy, J.L., Loudon, M.A., Mant, D., Farmer, A.J., Prendergast, B.D. and Ox-VALVEPCS Group (2014) The OxVALVE Population Cohort Study (OxVALVE-PCS)—Population Screening for Undiagnosed Valvular Heart Disease in the Elderly: Study Design and Objectives. Open Heart, 1, e000043.
https://doi.org/10.1136/openhrt-2014-000043
[72]  van Engeland, N.C.A., Bertazzo, S., Sarathchandra, P., et al. (2017) Aortic Calcified Particles Modulate Valvular Endothelial and Interstitial Cells. Cardiovascular Pathology, 28, 36-45.
https://doi.org/10.1016/j.carpath.2017.02.006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133