全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于深度学习的刀具磨损检测研究综述
Overview of Tool Wear Detection Based on Deep Learning

DOI: 10.12677/ORF.2023.132122, PP. 1186-1203

Keywords: 刀具磨损,信号处理,特征提取,深度学习,智能制造
Tool Wear
, Signal Processing, Feature Extraction, Deep Learning, Smart Manufacturing

Full-Text   Cite this paper   Add to My Lib

Abstract:

在现代化智能制造加工过程中,刀具的磨损状态直接决定工件产品的质量。传统的刀具磨损检测方法存在检测精度低、鲁棒性差等问题。近年来,深度学习的发展为刀具磨损检测提供了更加智能的解决方案。从刀具磨损检测流程开始梳理,对刀具磨损信号的检测方法进行阐述,将采集刀具磨损信号的常用处理方法进行归纳,并对常用的刀具磨损深度学习模型进行分类,说明不同模型的原理,特点以及研究现状,最后分析了不同方法的特点和应用场景。
In the modern intelligent manufacturing process, the wear status of the tool directly determines the quality of the workpiece product. Traditional tool wear detection methods have problems such as low detection accuracy and poor robustness. In recent years, the development of deep learning has provided a more intelligent solution for tool wear detection. Starting from the process of tool wear detection, the detection methods of tool wear signals are explained, the common processing methods for collecting tool wear signals are summarized, and the common deep learning models for tool wear are classified, the principles, characteristics and research status of different models are explained, and finally the characteristics and application scenarios of different methods are analyzed.

References

[1]  刘战强, 黄传真, 万熠, 等. 切削温度测量方法综述[J]. 工具技术, 2002, 36(3): 3-6.
[2]  李鹏, 黄亦翔, 夏鹏程, 等. 基于一维卷积长短时记忆网络的多信号融合刀具磨损评估[J]. 机械与电子, 2021, 39(5): 8-14.
[3]  关山, 康晓峰. 在线金属切削刀具磨损状态监测研究的回顾与展望I: 监测信号的选择[J]. 机床与液压, 2010, 38(11): 127-132.
[4]  陈雷明, 杨润泽, 张治. 刀具检测方法综述[J]. 机械制造与自动化, 2011, 40(1): 49-50+144.
[5]  孙巍伟, 黄民, 高延. 基于EMD-HMM的机床刀具磨损故障诊断[J]. 机床与液压, 2017, 45(13): 178-181.
[6]  赵帅, 黄亦翔, 王浩任, 等. 基于随机森林与主成分分析的刀具磨损评估[J]. 机械工程学报, 2017, 53(21): 181-189.
[7]  王爽. 基于高斯回归分析的高温合金刀具磨损在线预测方法[J]. 工具技术, 2022, 56(2): 83-87.
[8]  Martínez-Arellano, G., Terrazas, G. and Ratchev, S. (2019) Tool Wear Classification Using Time Series Imaging and Deep Learning. The International Journal of Advanced Manufacturing Technology, 104, 3647-3662.
https://doi.org/10.1007/s00170-019-04090-6
[9]  贾娜, 马雪亭. 对刀具磨损获取信号处理方法的探讨[J]. 机械制造, 2015, 53(3): 55-57.
[10]  王友仁, 王俊, 黄海安. 基于非线性短时傅里叶变换阶次跟踪的变速行星齿轮箱故障诊断[J]. 中国机械工程, 2018, 29(14): 1688-1695.
[11]  Chen, J.G., Jiang, J., Guo, X.N., et al. (2021) An Efficient CNN with Tunable Input-Size for Bearing Fault Diagnosis. International Journal of Computational Intel-ligence Systems, 14, 625-634.
https://doi.org/10.2991/ijcis.d.210113.001
[12]  Torrence, C. and Compo, G.P. (1998) A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79, 61-78.
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
[13]  Yu, D., Cheng, J. and Yang, Y. (2005) Application of EMD Method and Hilbert Spectrum to the Fault Diagnosis of Roller Bearings. Mechanical Systems and Signal Processing, 19, 259-270.
https://doi.org/10.1016/S0888-3270(03)00099-2
[14]  Huang, N.E., Shen, Z. and Long, S.R. (1998) The Em-pirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proceedings of the Royal Society of London, 454, 903-995.
https://doi.org/10.1098/rspa.1998.0193
[15]  刘长良, 武英杰, 甄成刚. 基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J]. 中国电机工程学报, 2015, 35(13): 3358-3365.
[16]  Goodfellow, I., Le, Q., Saxe, A., et al. (2009) Measuring Invariances in Deep Networks. In: Advances in Neural Information Processing Systems, MIT Press, Cambridge, 646-654.
[17]  Erhan, D., Bengio, Y., Courville, A., et al. (2010) Why Does Unsupervised Pre-Training Help Deep Learning. Journal of Machine Learning Research, 11, 625-660.
[18]  Sick, B. (2002) On-Line and Indirect Tool Wear Monitoring in Turning with Artificial Neural Networks: A Review of More than a Decade of Research. Mechanical Systems and Signal Processing, 16, 487-546.
https://doi.org/10.1006/mssp.2001.1460
[19]  Bengio, Y., Simard, P. and Frasconi, P. (1994) Learning Long-Term Dependencies with Gradient Descent Is Difficult. IEEE Transactions on Neural Networks, 5, 157-166.
https://doi.org/10.1109/72.279181
[20]  何彦, 凌俊杰, 王禹林, 等. 基于长短时记忆卷积神经网络的刀具磨损在线监测模型[J]. 中国机械工程, 2020, 31(16): 1959-1967.
[21]  Hochreiter, S. and Schmidhuber, J. (1997) Long Short-Term Memory. Neural Computation, 9, 1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735
[22]  吴飞, 农皓业, 马晨浩. 基于PSO-LSTM模型的刀具磨损预测方法[J/OL]. 吉林大学学报(工学版): 1-9.
https://doi.org/10.13229/j.cnki.jdxbgxb20210778, 2023-3-14.
[23]  姜超, 李国富. 改进VMD-LSTM法在刀具磨损状态识别中的应用[J]. 机械科学与技术, 2022, 41(2): 246-252.
[24]  Zhou, J.T., Zhao, X. and Gao, J. (2019) Tool Remaining Useful Life Prediction Method Based on LSTM under Variable Working Conditions. The International Journal of Advanced Manufacturing Technology, 104, 4715-4726.
https://doi.org/10.1007/s00170-019-04349-y
[25]  Sayyad, S., Kumar, S., Bongale, A., et al. (2022) Tool Wear Prediction Using Long Short-Term Memory Variants and Hybrid Feature Selection Techniques. The International Journal of Advanced Manufacturing Technology, 121, 6611-6633.
https://doi.org/10.1007/s00170-022-09784-y
[26]  Prihatno, A.T., Nurcahyanto, H., Ahmed, M.F., et al. (2021) Forecasting PM2.5 Concentration Using a Single-Dense Layer Bi-LSTM Method. Electronics, 10, 1808.
https://doi.org/10.3390/electronics10151808
[27]  Lopez, E., Valle, C., Allende, H., et al. (2018) Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. Energies, 11, 526-536.
https://doi.org/10.3390/en11030526
[28]  郝俊虎, 胡毅, 崔宁宁, 等. GRU-BP在数字化车间关键部件寿命预测中的研究[J]. 小型微型计算机系统, 2020, 41(3): 637-642.
[29]  胡德凤, 张晨曦, 汪世涛, 等. 基于深度信号处理和堆叠残差GRU的刀具磨损智能预测模型[J]. 计算机科学, 2021, 48(6): 175-183.
[30]  Xu, W.X., Miao, H.H., Zhao, Z.B., et al. (2021) Multi-Scale Convolutional Gated Recurrent Unit Networks for Tool Wear Prediction in Smart Manufacturing. Chinese Journal of Mechanical Engineering, 34, 1-16.
https://doi.org/10.1186/s10033-021-00565-4
[31]  Xu, H., Zhang, C., Hong, G.S., et al. (2018) Gated Recurrent Units Based Neural Network for Tool Condition Monitoring. 2018 IEEE International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, 8-13 July 2018, 1-7.
https://doi.org/10.1109/IJCNN.2018.8489354
[32]  曾安, 聂文俊. 基于深度双向LSTM的股票推荐系统[J]. 计算机科学, 2019, 46(10): 84-89.
[33]  Liu, F.G., Zheng, J.Z., Zheng, L.L., et al. (2020) Combining Atten-tion-Based Bidirectional Gated Recurrent Neural Network and Two-Dimensional Convolutional Neural Network for Document-Level Sentiment Classification. Neurocomputing, 371, 39-50.
https://doi.org/10.1016/j.neucom.2019.09.012
[34]  陈启鹏, 谢庆生, 袁庆霓, 等. 基于深度门控循环单元神经网络的刀具磨损状态实时监测方法[J]. 计算机集成制造系统, 2020, 26(7): 1782-1793.
[35]  Wu, X.Q., Li, J., Jin, Y.Q., et al. (2020) Modeling and Analysis of Tool Wear Prediction Based on SVD and BiLSTM. The Interna-tional Journal of Advanced Manufacturing Technology, 106, 4391-4399.
https://doi.org/10.1007/s00170-019-04916-3
[36]  Mahmood, J., Luo, M. and Rehman, M. (2022) An Acurate Detection of Tool Wear Type in Drilling Process by Applying PCA and One-Hot Encoding to SSA-BLSTM Model. The International Journal of Advanced Manufacturing Technology, 118, 3897-3916.
https://doi.org/10.1007/s00170-021-08200-1
[37]  Zhao, R., Wang, D.Z., Yan, R.Q., et al. (2017) Machine Health Monitoring Using Local Feature-Based Gated Recurrent Unit Networks. IEEE Transactions on Industrial Electronics, 65, 1539-1548.
https://doi.org/10.1109/TIE.2017.2733438
[38]  Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012) ImageNet Classification with Deep Convolutional Neural Networks. Communications of the ACM, 60, 2-12.
[39]  Li, Z.B., Li, F., Zhu, L., et al. (2020) Vegetable Recognition and Classification Based on Improved VGG Deep Learning Network Model. International Journal of Computational Intelligence Systems, 13, 559-564.
https://doi.org/10.2991/ijcis.d.200425.001
[40]  周谦, 国凯, 孙杰. VGG13卷积神经网络在刀具磨损监测中的应用[J]. 工具技术, 2022, 56(6): 112-116.
[41]  Yang, J., Duan, J., Li, T.X., et al. (2022) Tool Wear Monitoring in Milling Based on Fine-Grained Image Classification of Machined Surface Images. Sensors, 22, 8416.
https://doi.org/10.3390/s22218416
[42]  Szegedy, C., Liu, W., Jia, Y.Q., et al. (2015) Going Deeper with Convolutions. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, 7-12 June 2015, 1-9.
https://doi.org/10.1109/CVPR.2015.7298594
[43]  Liao, Y.B., Ragai, I., Huang, Z.Y., et al. (2021) Manufac-turing Process Monitoring Using Time-Frequency Representation and Transfer Learning of Deep Neural Networks. Journal of Manufacturing Processes, 68, 231-248.
https://doi.org/10.1016/j.jmapro.2021.05.046
[44]  童诗佳. 基于GoogleNet的断刀检测系统[D]: [硕士学位论文]. 武汉: 华中科技大学, 2019.
[45]  He, K.M., Zhang, X.Y., Ren, S.Q., et al. (2016) Deep Residual Learning for Image Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Wash-ington DC, 27-30 June 2016, 770-778.
https://doi.org/10.1109/CVPR.2016.90
[46]  Dong, L., Wang, C.S., Yang, G., et al. (2023) An Improved ResNet-1d with Channel Attention for Tool Wear Monitor in Smart Manufacturing. Sensors, 23, 1240.
https://doi.org/10.3390/s23031240
[47]  Li, Y.T., Xie, Q.S., Huang, H.S., et al. (2019) Research on a Tool Wear Monitoring Algorithm Based on Residual Dense Network. Symmetry, 11, 809.
https://doi.org/10.3390/sym11060809
[48]  Huang, G. and Liu, Z. (2017) Densely Connected Convolutional Networks. IEEE Computer Vision and Pattern Recognition, Honolulu, 21-26 July 2017, 1-28.
https://doi.org/10.1109/CVPR.2017.243
[49]  曹大理, 孙惠斌, 张纪铎, 等. 基于卷积神经网络的刀具磨损在线监测[J]. 计算机集成制造系统, 2020, 26(1): 74-80.
[50]  Guo, B.S., Zhang, Q., Peng, Q.J., et al. (2022) Tool Health Monitoring and Prediction via Attention-Based Encoder-Decoder with a Multi-Step Mechanism. The Inter-national Journal of Advanced Manufacturing Technology, 122, 685-695.
https://doi.org/10.1007/s00170-022-09894-7
[51]  Hinton, G.E. (2010) A Practical Guide to Training Restricted Boltzmann Machines. Momentum, 9, 926-947.
[52]  Hinton, G.E., Osindero, S. and The, Y.W. (2006) A Fast Learning Algorithm for Deep Belief Nets. Neural Computation, 18, 1527-1554.
https://doi.org/10.1162/neco.2006.18.7.1527
[53]  Wang, Y.Q., Qin, B., Liu, K., et al. (2020) A New Multitask Learning Method for Tool Wear Condition and Part Surface Quality Prediction. IEEE Transactions on Industrial Informatics, 17, 6023-6033.
https://doi.org/10.1109/TII.2020.3040285
[54]  刘子安, 刘建春, 苏进发, 等. 刀具磨损感知数据驱动下的DBN预测模型研究[J]. 机械科学与技术, 2021, 40(7): 1043-1050.
[55]  Chen, Y.X., Jin, Y. and Jiri, G. (2018) Predicting Tool Wear with Multi-Sensor Data Using Deep Belief Networks. The International Journal of Advanced Manufacturing Technology, 99, 1917-1926.
https://doi.org/10.1007/s00170-018-2571-z
[56]  David, L.G., Patra, R.K., Falkowski-Gilski, P., et al. (2022) Tool Wear Monitoring Using Improved Dragonfly Optimization Algorithm and Deep Belief Network. Applied Sciences, 12, 8130.
https://doi.org/10.3390/app12168130
[57]  Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986) Learning Representations by Back-Propagating Errors. Nature, 323, 533-536.
https://doi.org/10.1038/323533a0
[58]  Xu, L., Cao, M.Y., Song, B.Y., et al. (2018) Open-Circuit Fault Diag-nosis of Power Rectifier Using Sparse Autoencoder Based Deep Neural Network. Neurocomputing, 311, 1-10.
https://doi.org/10.1016/j.neucom.2018.05.040
[59]  李宏坤, 郝佰田, 代月帮, 等. 基于压缩感知和加噪堆栈稀疏自编码器的铣刀磨损程度识别方法研究[J]. 机械工程学报, 2019, 55(14): 1-10.
[60]  安华, 王国锋, 王喆, 等. 基于深度学习理论的刀具状态监测及剩余寿命预测方法[J]. 电子测量与仪器学报, 2019, 33(9): 64-70.
[61]  Ochoa, L.E.E., Quinde, I.B.R., Sumba, J.P.C., et al. (2019) New Approach Based on Autoencoders to Monitor the Tool Wear Condition in HSM. IFAC-PapersOnLine, 52, 206-211.
https://doi.org/10.1016/j.ifacol.2019.09.142
[62]  Ou, J.Y., Li, H.K., Huang, G.J., et al. (2020) A Novel Order Analysis and Stacked Sparse Auto-Encoder Feature Learning Method for Milling Tool Wear Condition Monitoring. Sensors, 20, 2878.
https://doi.org/10.3390/s20102878
[63]  雷亚国, 杨彬, 杜兆钧, 吕娜. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报, 2019, 55(7): 1-8.
[64]  庄福振, 罗平, 何清, 等. 迁移学习研究进展[J]. 软件学报, 2015, 26(1): 26-39.
[65]  戴稳, 张超勇, 孟磊磊, 等. 采用深度学习的铣刀磨损状态预测模型[J]. 中国机械工程, 2020, 31(17): 2071-2078.
[66]  蔡伟立, 胡小锋, 刘梦湘. 基于迁移学习的刀具剩余寿命预测方法[J]. 计算机集成制造系统, 2021, 27(6): 1541-1549.
[67]  Sun, C., Ma, M., Zhao, Z.B., et al. (2018) Deep Transfer Learning Based on Sparse Autoencoder for Remaining Useful Life Prediction of Tool in Manufacturing. IEEE Transactions on Industrial Informatics, 15, 2416-2425.
https://doi.org/10.1109/TII.2018.2881543
[68]  Wang, P. and Russell, M. (2020) Domain Adversarial Transfer Learning for Generalized Tool Wear Prediction. Proceedings of the Annual Conference of the PHM Society, 12, 8.
https://doi.org/10.36001/phmconf.2020.v12i1.1137

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133