全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

石油输送场站巡检机器人设计
Patrol Inspection Robot Design for Oil Transportation Station

DOI: 10.12677/CSA.2023.134085, PP. 865-882

Keywords: 机器人,输油场站巡检,仪表读数,路径规划
Robot
, Patrol Inspection of Oil Transmission Station, Meter Reading, Path Planning

Full-Text   Cite this paper   Add to My Lib

Abstract:

石油化工企业的输油场站承载着成品油的储存、运输及终端销售任务,输油场站的巡检工作十分重要,目前主要采用人工巡检的方式,人工方式危险性高、劳动强度大,而且受巡检工个人工作能力的限制,巡检质量也参差不齐。为保证输油场站的安全,研制了一种输油场站巡检机器人系统,实现24小时不间断巡检。本文阐述了巡检机器人系统的组成和实现方法,介绍了基于图像处理技术的输油场站仪表读数识别研究,根据指针式仪表的特征,对读数进行识别,识别精度满足场站巡检抄表要求;并且对输油场站巡检机器人进行路径规划研究,针对机器人在静态障碍物环境中随机出现动态障碍物情况,提出一种改进A*算法与改进人工势场法结合的混合算法,成功解决遇到动态障碍物无法避障的问题。应用结果表明,该巡检机器人系统工作可靠,取得了较好的效果。
The oil transportation stations of petrochemical enterprises are responsible for the storage, trans-portation, and terminal sales of finished oil. The patrol inspection work of oil transportation stations is very important. Currently, manual patrol inspection is mainly used, which is highly hazardous and labor intensive. Moreover, due to the limitations of the personal work ability of patrol inspec-tors, the quality of patrol inspection is also uneven. In order to ensure the safety of oil transportation stations, a patrol robot system for oil transportation stations is developed, which realizes 24-hour uninterrupted patrol inspection. This paper describes the composition and implementation method of the patrol robot system, and introduces the research on the instrument reading recognition of oil transportation stations based on image processing technology. According to the characteristics of pointer-type instruments, the readings are recognized, and the recognition accuracy meets the requirements of station patrol meter reading; in addition, a path planning study was conducted on the inspection robot for oil transportation stations. Aiming at the situation where the robot randomly encounters dynamic obstacles in a static obstacle environment, a hybrid algorithm combining the improved A* algorithm and the improved artificial potential field method was proposed, successfully solving the problem of encountering dynamic obstacles that cannot be avoided. The application results show that the patrol robot system works reliably and achieves good results.

References

[1]  李军伟, 朱宇昌, 张树生, 孙宁, 裴文良. 输油场站巡检机器人系统及软件设计[J]. 制造业自化, 2019, 41(2): 97-100.
[2]  黄嘉东, 陈海平. 数据中心机房的智能巡检机器人设计及应用[J]. 计算机与网络, 2017, 43(22): 46-47.
[3]  尹项迎, 蔺飞飞. 智能巡检机器人的现状与发展趋势[J]. 科技视界, 2020(24): 160-162.
[4]  周明静, 马铭洋. 石化场站巡检机器人系统设计[J]. 信息系统工程, 2019(5): 104-105.
[5]  吕庆明. 树莓派状态监测机器人设计[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2018.
[6]  许海, 徐瑾, 徐帅. 基于Linux系统的树莓派一系列开发[J]. 电脑知识与技术, 2018, 14(8): 236-238.
https://doi.org/10.14004/j.cnki.ckt.2018.1041
[7]  安峰. 基于开源操作系统ROS的机器人软件开发[J]. 单片机与嵌入式系统应用, 2017, 17(5): 27-29+33.
[8]  李源. 基于树莓派的无线视频监控系统关键技术研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2016.
[9]  许丽, 石伟, 方甜. 巡检机器人中的指针式仪表读数识别系统[J]. 仪器仪表学报, 2017, 38(7): 1782-1790.
[10]  范鹏发. 基于机器视觉的指针式仪表自动读数系统研究[D]: [硕士学位论文]. 秦皇岛: 燕山大学, 2013.
[11]  Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M. and Lempitsky, V.S. (2016) Domain-Adversarial Training of Neural Networks. Journal of Machine Learning Research, 17, 39-41.
[12]  贝旭颖, 平雪良, 高文研. 轮式移动机器人里程计系统误差校核[J]. 计算机应用研究, 2018, 35(9): 2696-2699+2703.
[13]  Han, D., Nie, H., Chen, J.B. and Chen, M. (2018) Dynamic Obstacle Avoidance for Manipulators Using Distance Calculation and Discrete Detection. Robotics and Computer-Integrated Manufacturing, 49, 98-104.
https://doi.org/10.1016/j.rcim.2017.05.013
[14]  柴国贝. 激光雷达成像特征分析及应用研究[D]: [博士学位论文]. 西安: 西安电子科技大学, 2016.
[15]  齐晨阳. 基于深度学习的实例分割算法的研究及应用[D]: [硕士学位论文]. 成都: 电子科技大学, 2021.
https://doi.org/10.27005/d.cnki.gdzku.2021.003411

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133