全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非对称拉盖尔–高斯光束操纵下介质的光学性质
Optical Properties of the Medium under Asymmetric Laguerre-Gaussian Beams Manipulation

DOI: 10.12677/APP.2023.134019, PP. 164-174

Keywords: 矢量光束,非对称拉盖尔–高斯光,偏振特性,轨道角动量
Vector Beam
, Asymmetric Laguerre-Gaussian Beam, Polarization Properties, Orbital Angular Momentum

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了由非对称拉盖尔高斯(aLG)光束控制的四能级双V原子系统的特性。在探测场的传输过程中,发生了圆形双折射,为矢量光束的形成提供了条件(VBs),并且重点讨论了探针场强度和偏振随传输距离的变化。结果表明,探测场的偏振在短距离内呈线性变化。此外,证明了传输距离的操纵可以实现探测场的偏振分离。这为获得VB提供了一种新的思路。
In this paper, the properties of a four-level double-V atomic system controlled by asymmetric Laguerre Gaussian (aLG) beam are studied. During the transmission of the probe field, circular birefringence occurs, resulting in vector beams (VBs). The variation of probe field intensity and polarization with transmission distance is discussed emphatically. The results show that the polarization of the probe field varies linearly over a short distance. In addition, it has been proved that the operation of transmission distance can achieve polarization separation of the probe field. This provides a new method for obtaining VBs.

References

[1]  Milione, G., Sztul, H.I., Nolan, D.A. and Alfano, R.R. (2011) Higher-Order Poincaré Sphere, Stokes Parameters, and the Angular Momentum of Light. Physical Review Letters, 107, Article ID: 053601.
https://doi.org/10.1103/PhysRevLett.107.053601
[2]  Yi, X., Liu, Y., Ling, X., et al. (2015) Hybrid-Order Poincaré Sphere. Physical Review A, 91, Article ID: 023801.
https://doi.org/10.1103/PhysRevA.91.023801
[3]  Naidoo, D., Roux, F.S., Dudley, A., et al. (2016) Controlled Generation of Higher-Order Poincaré Sphere Beams from a Laser. Nature Photonics, 10, 327-332.
https://doi.org/10.1038/nphoton.2016.37
[4]  Maurer, C., Jesacher, A., Fürhapter, S., Bernet, S. and Ritsch-Marte, M. (2007) Tailoring of Arbitrary Optical Vector Beams. New Journal of Physics, 9, Article No. 78.
https://doi.org/10.1088/1367-2630/9/3/078
[5]  Wang, J., Castellucci, F. and Franke-Arnold, S. (2020) Vec-torial Light-Matter Interaction: Exploring Spatially Structured Complex Light Fields. AVS Quantum Science, 2, Article ID: 031702.
https://doi.org/10.1116/5.0016007
[6]  Lerman, G.M., Stern, L. and Levy, U. (2010) Generation and Tight Focusing of Hybridly Polarized Vector Beams. Optics Express, 18, 27650-27657.
https://doi.org/10.1364/OE.18.027650
[7]  Volpe, G. and Petrov, D. (2004) Generation of Cylindrical Vector Beams with Few-Mode Fibers Excited by Laguerre-Gaussian Beams. Optics Communications, 237, 89-95.
https://doi.org/10.1016/j.optcom.2004.03.080
[8]  Wang, X.-L., Ding, J., Ni, W.-J., Guo, C.-S. and Wang, H.-T. (2007) Generation of Arbitrary Vector Beams with a Spatial Light Modulator and a Common Path Interferometric Arrangement. Optics Letters, 32, 3549-3551.
https://doi.org/10.1364/OL.32.003549
[9]  Yu, P., Chen, S., Li, J., et al. (2015) Generation of Vector Beams with Arbitrary Spatial Variation of Phase and Linear Polarization Using Plasmonic Metasurfaces. Optics Letters, 40, 3229-3232.
https://doi.org/10.1364/OL.40.003229
[10]  Ghaderi Goran Abad, M. and Mahmoudi, M. (2021) Laguerre-Gaussian Modes Generated Vector Beam via Nonlinear Magneto-Optical Rotation. Scientific Reports, 11, Article No. 5972.
https://doi.org/10.1038/s41598-021-85249-8
[11]  Li, Z., Franke-Arnold, S., Clark, T.W., et al. (2022) Transfer and Evolution of Structured Polarization in a Double-V Atomic System. Optics Express, 30, 19812-19823.
https://doi.org/10.1364/OE.457368
[12]  Gibson, C.J., Bevington, P., Oppo, G.-L. and Yao, A.M. (2018) Control of Polarization Rotation in Nonlinear Propagation of Fully Structured Light. Physical Review A, 97, Article ID: 033832.
https://doi.org/10.1103/PhysRevA.97.033832
[13]  Castellucci, F., Clark, T.W., Selyem, A., Wang, J. and Franke-Arnold, S. (2021) Atomic Compass: Detecting 3D Magnetic Field Alignment with Vector Vortex Light. Physical Review Letters, 127, Article ID: 233202.
https://doi.org/10.1103/PhysRevLett.127.233202
[14]  Rumala, Y.S., Milione, G., Nguyen, T.A., et al. (2013) Tunable Supercontinuum Light Vector Vortex Beam Generator Using a q-Plate. Optics Letters, 38, 5083-5086.
https://doi.org/10.1364/OL.38.005083
[15]  Gu, B., Wu, J.L., Sheng, N., Liu, D. and Cui, Y. (2015) Enhanced Optical Limiting Effects in Multiphoton Absorbers Using Cylindrical Vector Beams. In: CLEO 2015: Applications and Technology, Optica Publishing Group, Washington DC.
https://doi.org/10.1364/CLEO_AT.2015.JTu5A.1
[16]  Zhao, M., Jiang, X., Fang, R., et al. (2021) Laser Fre-quency Stabilization via Bichromatic Doppler-Free Spectroscopy of an 87Rb D1 Line. Applied Optics, 60, 5203-5207.
https://doi.org/10.1364/AO.425694
[17]  Molina-Terriza, G., Torres, J.P. and Torner, L. (2007) Twisted Pho-tons. Nature Physics, 3, 305-310.
https://doi.org/10.1038/nphys607
[18]  Padgett, M., Courtial, J. and Allen, L. (2004) Light’s Orbital Angular Momentum. Physics Today, 57, 35-40.
https://doi.org/10.1063/1.1768672
[19]  Woerdemann, M., Alpmann, C., Esseling, M. and Denz, C. (2013) Advanced Optical Trapping by Complex Beam Shaping. Laser & Photonics Reviews, 7, 839-854.
https://doi.org/10.1002/lpor.201200058
[20]  Grier, D.G. (2003) A Revolution in Optical Manipulation. Nature, 424, 810-816.
https://doi.org/10.1038/nature01935
[21]  Vaziri, A., Pan, J.-W., Jennewein, T., Weihs, G. and Zeilinger, A. (2003) Concentration of Higher Dimensional Entanglement: Qutrits of Photon Orbital Angular Mo-mentum. Physical Review Letters, 91, Article ID: 227902.
https://doi.org/10.1103/PhysRevLett.91.227902
[22]  Shi, S., Ding, D.-S., Zhang, W., et al. (2017) Transverse Azimuthal Dephasing of a Vortex Spin Wave in a Hot Atomic Gas. Physical Review A, 95, Article ID: 033823.
https://doi.org/10.1103/PhysRevA.95.033823
[23]  He, H., Friese, M.E.J., Heckenberg, N.R. and Ru-binsztein-Dunlop, H. (1995) Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity. Physical Review Letters, 75, 826-829.
https://doi.org/10.1103/PhysRevLett.75.826
[24]  Amini Sabegh, Z., Amiri, R. and Mahmoudi, M. (2018) Spatially Dependent Atom-Photon Entanglement. Scientific Reports, 8, Article No. 13840.
https://doi.org/10.1038/s41598-018-32051-8
[25]  Kotlyar, V.V., Kovalev, A.A. and Soifer, V.A. (2014) Asymmetric Bessel Modes. Optics Letters, 39, 2395-2398.
https://doi.org/10.1364/OL.39.002395
[26]  Cai, Y. and Lin, Q. (2002) Decentered Elliptical Gaussian Beam. Applied Optics, 41, 4336-4340.
https://doi.org/10.1364/AO.41.004336
[27]  Kovalev, A.A., Kotlyar, V.V. and Porfirev, A.P. (2016) Asym-metric Laguerre-Gaussian beams. Physical Review A, 93, Article ID: 063858.
https://doi.org/10.1103/PhysRevA.93.063858

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133