全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

第一性原理研究钼酸铅中氧填隙光谱
First Principles Study of Interstitial Oxygen Spectra in Lead Molybdate Crystals

DOI: 10.12677/APP.2023.134017, PP. 146-155

Keywords: DFT计算,氧填隙,FNV修正,光学性质
Density Functional Theory Calculation
, Interstitial Oxygen, Finite-Size Correction, Optical Spectra

Full-Text   Cite this paper   Add to My Lib

Abstract:

由氧填隙引起的光致变色效应出现在淡黄色的钼酸铅晶体中,这严重影响了晶体在光学仪器中的应用。因此,了解钼酸铅晶体中由内在缺陷引起的特性是非常重要的。在这项工作中,通过考虑有限尺寸(FNV)校正,获得了缺陷形成能量。在考虑电子–声子耦合的情况下,计算得到了氧填隙的光谱。计算结果表明,钼酸铅中氧填隙的光谱峰值分别为1.73 eV和2.15 eV,与实验值2.14 eV (580 nm)非常吻合。对应于 OIOI的发射峰的位置为1.23 eV和1.97 eV与实验结果比较接近。吸收带580纳米与我们计算得到的氧填隙的吸收带相吻合,所以我们预测580纳米的吸收带来自氧填隙缺陷。
A photochromic effect caused by interstitial oxygen presents in the yellowish lead molybdate crystals, which seriously affects the application of the crystals in optical instruments. So it is essential to understand the properties caused by intrinsic defects in lead molybdate crystals. In this work, the defect formation energy has been obtained by taking the finite-size (FNV) correction into consideration. The optical spectra also have been gotten under the consideration of electron-phonon coupling. The calculated results indicate that the spectra of the interstitial oxygen in lead molybdate peaks are of 1.73 eV and 2.15 eV, respectively, which are in very good agreement with the experimental value of 2.14 eV (580 nm). The positions of the emission peak corresponding to the OI and OI defects are 1.23 eV and 1.97 eV, which are consistent with the experimental results (1.8 eV and 2.1 eV). The absorption band 580 nm coincides with the absorption band obtained from our calculation of the interstitial oxygen, so we predict that the 580 nm absorption band comes from the interstitial oxygen.

References

[1]  Van Loo, W. (1975) Luminescence of Lead Molybdate and Lead Tungstate. I. Experimental. Physica Status Solidi (A), 27, 565-574.
https://doi.org/10.1002/pssa.2210270227
[2]  Groenink, J.A. and Binsma, H. (1979) Elec-trical Conductivity and Defect Chemistry of PbMoO4 and PbWO4. Journal of Solid State Chemistry, 29, 227-236.
https://doi.org/10.1016/0022-4596(79)90228-7
[3]  Bollmann, W. (1986) Coloration, Photoconductivity, Photo- and Thermoluminescence of PbMoO4 Crystals. Kristall und Technik, 15, 367-375.
https://doi.org/10.1002/crat.19800150320
[4]  Groenink, J.A. and Blasse, G. (1980) Some New Observations on the Luminescence of PbMoO4 and PbWO4. Journal of Solid State Chemistry, 32, 9-20.
https://doi.org/10.1016/0022-4596(80)90263-7
[5]  Bernhardt, H. and Schnell, R. (1981) Modula-tion-Spectroscopic Investigations of Defect Centres in PbMoO4 Crystals. Physica Status Solidi (A), 64, 207-214.
https://doi.org/10.1002/pssa.2210640122
[6]  Zeng, H.C. (1997) Correlation of PbMoO4 Crystal Imperfec-tions to Czochralski Growth Process. Journal of Crystal Growth, 171, 136-145.
https://doi.org/10.1016/S0022-0248(96)00465-4
[7]  Schwinger, J. (1981) Thomas-Fermi model: The Second Correction. Physical Review A, 24, 2353-2361.
https://doi.org/10.1103/PhysRevA.24.2353
[8]  Zhang, Y., Holzwarth, N.A.W. and Williams, R.T. (1998) Electronic Band Structures of the Scheelite Materials CaMoO4, CaWO4, PbMoO4, andPbWO4. Physical Review B, 57, 12738-12750.
https://doi.org/10.1103/PhysRevB.57.12738
[9]  Bochkova, T.M., Volnyanskii, M.D., Volnyanskii, D.M. and Shchetinkin, V.S. (2003) Color Centers in Lead Molybdate Crystals. Physics of the Solid State, 45, 244-247.
https://doi.org/10.1134/1.1553525
[10]  Spassky, D.A., Ivanov, S.N., Kolobanov, V.N., et al. (2004) Optical and Luminescent Properties of the Lead and Barium Molybdates. Radiation Measurements, 38, 607-610.
https://doi.org/10.1016/j.radmeas.2004.03.019
[11]  Ryadun, A., Rakhmanova, M. and Grigorieva, V. (2020) Effect of Cu Doping on Properties of PbMoO4 Single Crystals as Materials for Luminescence Thermometry. Mate-rials Technology, 36, 805-810.
https://doi.org/10.1080/10667857.2020.1797325
[12]  Achary, S.N., Patwe, S.J., Vishwanth, A., et al. (2021) Evolution of Crystal Structure of PbMoO4 between 5 and 300K: A Low Temperature Powder Neuton Diffraction study. Materials Chemistry and Physics, 260, Article ID: 124111.
https://doi.org/10.1016/j.matchemphys.2020.124111
[13]  Delice, S., Isik, M. and Gasanly, N.M. (2022) Linear and Nonlinear Optical Characteristics of PbMoO4 Single Crystal for Optoelectronic Applications. Journal of Mate-rials Science: Materials in Electronics, 33, 22281-22290.
https://doi.org/10.1007/s10854-022-09006-x
[14]  Isik, M., Gasanly, N.M., Darvishov, N.H. and Bagiev, V.E. (2022) Structural and Temperature-Tuned Band Gap Energy Characteristics of PbMoO4 Single Crystals. Optical Materials, 126, Article ID: 112210.
https://doi.org/10.1016/j.optmat.2022.112210
[15]  Bhattacharyya, D., Poswal, A.K., Jha, S.N., Sangeeta and Sabharwal, S.C. (2009) X-Ray Absorption Spectroscopy of PbMoO4 Single Crystals. Bulletin of Materials Science, 32, 103-107.
https://doi.org/10.1007/s12034-009-0016-x
[16]  Yu, C., Yu, Q., Gao, C., et al. (2007) Structural and Electrical Properties of PbMoO4 under High Pressure. Journal of Physics: Condensed Matter, 19, Article ID: 425215.
https://doi.org/10.1088/0953-8984/19/42/425215
[17]  Chen, J., Liu, T., Cao, D. and Zhao, G. (2008) First-Principles Study of the Electronic Structures and Absorption Spectra for the PbMoO4 Crystal with Lead Va-cancy. Physica Status Solidi B: Basic Research, 245, 1152-1155.
https://doi.org/10.1002/pssb.200743403
[18]  Chen, J., Zhang, Q., Liu, T. and Shao, Z. (2008) First-Principles Study of Color Centers in PbMoO4 Crystals. Physica B: Condensed Matter, 403, 555-558.
https://doi.org/10.1016/j.physb.2007.09.058
[19]  Chen, J., Zhang, Q., Liu, T., Shao, Z. and Pu, C. (2008) Computer Simulation of PbMoO4 Crystal with Interstitial Oxygen Atoms. Computational Materials Science, 41, 330-333.
https://doi.org/10.1016/j.commatsci.2007.04.012
[20]  Buryi, M., Laguta, V., Nagorny, S., et al. (2020) Luminescence and Charge Trapping Features of archPbMoO4 Lead Molybdate Crystals Grown from Archae-ological Lead. Journal of Luminescence, 224, Article ID: 117305.
https://doi.org/10.1016/j.jlumin.2020.117305
[21]  Becke, A.D. (1988) Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Physical Review A, 38, 3098-3100.
https://doi.org/10.1103/PhysRevA.38.3098
[22]  Freysoldt, C., Neugebauer, J. and Van de Walle, C.G. (2009) Fully Ab Initio Finite-Size Corrections for Charged-Defect Supercell Calculations. Physical Review Letters, 102, Article ID: 016402.
https://doi.org/10.1103/PhysRevLett.102.016402
[23]  Dickinson, R.G. (2002) The Crystal Structures of Wulfenite and Scheelite. Journal of the American Chemical Society, 42, 85-93.
https://doi.org/10.1021/ja01446a012
[24]  Kresse, G. and Furthmuller, J. (1996) Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B, 54, 11169-11186.
https://doi.org/10.1103/PhysRevB.54.11169
[25]  Kresse, G. and Joubert, D. (1999) From Ultrasoft Pseudo-potentials to the Projector Augmented-Wave Method. Physical Review B, 59, 1758-1775.
https://doi.org/10.1103/PhysRevB.59.1758
[26]  Bl?chl, P.E. (1994) Projector Augmented-Wave Method. Physical Review B, 50, 17953-17979.
https://doi.org/10.1103/PhysRevB.50.17953
[27]  Alkauskas, A., Broqvist, P. and Pasquarello, A. (2008) De-fect Energy Levels in Density Functional Calculations: Alignment and Band Gap Problem. Physical Review Letters, 101, Article ID: 046405.
https://doi.org/10.1103/PhysRevLett.101.046405
[28]  Komsa, H.-P. and Pasquarello, A. (2013) Finite-Size Supercell Correction for Charged Defects at Surfaces and Interfaces. Physical Review Letters, 110, Article ID: 095505.
https://doi.org/10.1103/PhysRevLett.110.095505
[29]  Coolidge, A.S. James, H.M. and Present, R.D. (1936) A Study of the Franck-Condon Principle. The Journal of Chemical Physics, 4, 193-211.
https://doi.org/10.1063/1.1749818
[30]  Alkauskas, A., Lyons, J.L., Steiauf, D. and Van de Walle, C.G. (2012) First-Principles Calculations of Luminescence Spectrum Line Shapes for Defects in Semiconductors: The Example of GaN and ZnO. Physical Review Letters, 109, Article ID: 267401.
https://doi.org/10.1103/PhysRevLett.109.267401

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133