全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类带扩散对流SIS模型的全局吸引子
Global Attractor of the SIS Epidemic Model with Diffusion and Convection

DOI: 10.12677/AAM.2023.124179, PP. 1722-1731

Keywords: SIS模型,基本再生数,稳定性
SIS Model
, The Basic Reproduction Number, Stability

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究一类SIS (Susceptible-Infected-Susceptible)反应扩散对流传染病模型。该模型在加入对流项q后,我们可以更好地模拟生物种群在受到被动影响时的动力行为。我们研究了该模型的基本再生数 对模型两类平衡点稳定性的影响。当基本再生数 时,无病平衡点是线性稳定的,当 时,无病平衡点是不稳定的。此时通过动力系统的知识我们证明了正全局吸引子的存在性, 由此也可得到正疾病平衡点的存在性。
In this paper, we study a class of SIS reaction diffusion convective infectious disease model. Adding convection term, we can better simulate the outcomes of biological populations. We study the ef-fects of the basic reproduction number on stability of the two types of equilibrium points of the model. When , disease-free equilibrium is linearly stable, while when , disease-free equilibrium is not linearly stable. In the later case, using theory of dynamical systems, we proved the existence of a positive global attractor of the system, and as a consequence, the existence of at least one positive equilibrium.

References

[1]  Allen, L.J.S., Bolker, B.M., Lou, Y. and Nevai, A.L. (2008) Asymptotic Profiles of the Steady States for an SIS Epi-demic Reaction-Diffusion Model. Discrete and Continuous Dynamical Systems, 21, 1-20.
https://doi.org/10.3934/dcds.2008.21.1
[2]  Deng, K. and Wu, Y. (2016) Dynamics of a Suscepti-ble-Infected-Susceptible Epidemic Reaction-Riffusion Model. Proceedings of the Royal Society of Edinburgh Section A, 146, 929-946.
https://doi.org/10.1017/S0308210515000864
[3]  Wu, Y. and Zou, Z. (2016) Asymptotic Profiles of Steady States for a Diffusive SIS Epidemic Model with Mass Action Infection Mechanism. Journal of Differential Equations, 261, 4424-4447.
https://doi.org/10.1016/j.jde.2016.06.028
[4]  Cui, R. and Lou, Y. (2016) A Spatial SIS Model in Advective Heterogeneous Environments. Journal of Differential Equations, 261, 3305-3343.
https://doi.org/10.1016/j.jde.2016.05.025
[5]  Cui, R., Li, H., Peng, R. and Zhou, M. (2021) Concentration Be-havior of Endemic Equilibrium for a Reaction-Diffusion-Advection SIS Epidemic Model with Mass Action Infection Mechanism. Calculus of Variations and Partial Differential Equations, 60, Article No. 184.
https://doi.org/10.1007/s00526-021-01992-w
[6]  Zhang, J. and Cui, R. (2020) Qualitative Analysis on a Diffusive SIS Epidemic System with Logistic Source and Spontaneous Infection in a Heterogeneous Environment. Nonlinear Analysis: Real World Applications, 55, 103115.
https://doi.org/10.1016/j.nonrwa.2020.103115
[7]  Cui, R., Lam, K.-Y., et al. (2017) Dynamics and Asymptotic Profiles of Steady States of an Epidemic Model in Advective Environments. Journal of Differential Equations, 263, 2343-2373.
https://doi.org/10.1016/j.jde.2017.03.045
[8]  Wang, W. and Zhao, X.Q. (2012) Basic Reproduction Numbers for Reaction-Diffusion Epidemic Models. SIAM Journal on Applied Dynamical Systems, 11, 1652-1673.
https://doi.org/10.1137/120872942
[9]  Du, Z. and Peng, R. (2016) A Priori Estimates for Solutions of a Class of Reaction-Diffusion Systems. Journal of Mathematical Biology, 72, 1429-1439.
https://doi.org/10.1007/s00285-015-0914-z
[10]  Smith, H.L. and Zhao, X.-Q. (2001) Robust Persistence for Sem-idynamical Systems. Nonlinear Analysis, 47, 6169-6179.
https://doi.org/10.1016/S0362-546X(01)00678-2
[11]  Magal, P. and Zhao, X.-Q. (2005) Global Attractors and Steady States for Uniformly Persistent Dynamical Systems. SIAM Journal on Mathematical Analysis, 37, 251-275.
https://doi.org/10.1137/S0036141003439173
[12]  Zhao, X.-Q. (2003) Dynamical Systems in Population Biology. 2nd Edition, Springer-Verlag, New York.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133