全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Hamacher三角模的对称毕达哥拉斯集成算子及其应用
Symmetric Pythagorean Fuzzy Aggregation Operator Based on the Hamacher T-Norm and Its Application

DOI: 10.12677/AAM.2023.124178, PP. 1713-1721

Keywords: Hamacher三角模,对称毕达哥拉斯集成算子,多属性决策
Hamacher T-Norm
, Symmetric Pythagorean Fuzzy Aggregation Operator, Multi-Attribute Decision Making

Full-Text   Cite this paper   Add to My Lib

Abstract:

在毕达哥拉斯模糊集和Hamacher三角模基础上,研究了一类带参数且具有对称性的集成算子。首先给出了毕达哥拉斯模糊数的对称运算规则;其次,提出了基于Hamacher三角模的对称毕达哥拉斯集成算子,讨论了它的性质;之后,提出一种决策方法来解决毕达哥拉斯模糊信息环境下的多属性决策问题;最后,用示例验证所给方法的有效性。
Based on the Pythagorean fuzzy set and Hamacher triangular norm, a class of aggregation operators with papameters and symmetric is studied. Firstly, the operational rules of Pythagorean fuzzy numbers is provided; secondly, the symmetric Pythagorean fuzzy aggregation operator based on the Hamacher triangular norm is defined, and some properties of it are investigated in detail; af-terwards, an approach to Pythagorean fuzzy multi-attribute decision making is presented based on the proposed operators. Finally, a practical example is given to illustrate the effectiveness of the proposed approach.

References

[1]  Zadeh, L.A. (1965) Fuzzy Sets. Information and Control, 8, 338-353.
https://doi.org/10.1016/S0019-9958(65)90241-X
[2]  Atanassov, K.T. (1986) Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, 20, 87-96.
https://doi.org/10.1016/S0165-0114(86)80034-3
[3]  Atanassov, K.T. (1994) Operators over Interval Valued In-tultionistic Fuzzy Sets. Fuzzy Sets and Systems, 64, 159-174.
https://doi.org/10.1016/0165-0114(94)90331-X
[4]  王坚强, 张忠. 基于直觉模糊数的信息不完全的多准则规划方法[J]. 控制与决策, 2008, 23(10): 1145-1148.
[5]  Liu, P.D. and Jin, F. (2012) Methods for Aggregating Intui-tionistic Uncertain Linguistic Variables and Their Application to Group Decision Making. Information Sciences, 205, 58-71.
https://doi.org/10.1016/j.ins.2012.04.014
[6]  Yager, R.R. (2014) Pythagorean Membership Grades in Mu-ticriteria Decision Making. IEEE Transactions on Fuzzy Systems, 22, 958-965.
https://doi.org/10.1109/TFUZZ.2013.2278989
[7]  Gou, X.J., Xu, Z.S. and Ren, P.J. (2015) The Properties of Continuous Pythagorean Fuzzy Information. International Journal of Intelligent Systems, 31, 401-424.
[8]  Zhang, X.L. (2016) Multicriteria Pythagorean Fuzzy Decision Analysis: A Hierarchical Qualiflex Approach with the Closeness In-dex-Based Ranking Methods. Information Sciences, 330, 104-124.
https://doi.org/10.1016/j.ins.2015.10.012
[9]  Peng, X. and Garg, H. (2019) Multiparametric Similarity Measures on Pythagorean Fuzzy Sets with Applications to Pattern Recognition. Applied Intelligence, 49, 4058-4096.
https://doi.org/10.1007/s10489-019-01445-0
[10]  Ma, Z. and Xu, Z. (2016) Symmetric Pythagorean Fuzzy Weighted Geometric/Averaging Operators and Their Application in Multicriteria Decision-Making Problems. Interna-tional Journal of Intelligent Systems, 31, 1198-1219.
https://doi.org/10.1002/int.21823
[11]  Liang, D., Zhang, Y., Xu, Z. and Darko, A.P. (2018) Pythagorean Fuzzy Bonferroni Mean Aggregation Operator and Its Accelerative Calculating Algorithm with the Multithreading. International Journal of Intelligent Systems, 33, 615-633.
https://doi.org/10.1002/int.21960
[12]  Garg, H. (2019) Novel Neutral-ity Operation-Based Pythagorean Fuzzy Geometric Aggregation Operators for Multiple Attribute Group Decision Analy-sis. International Journal of Intelligent Systems, 34, 2459-2489.
https://doi.org/10.1002/int.22157
[13]  Zhu, J. and Li, Y. (2018) Pythagorean Fuzzy Muirhead Mean Operators and Their Application in Multiple-Criteria Group Decision-Making. Information, 9, Article 142.
https://doi.org/10.3390/info9060142
[14]  Peng, D. and Yang, Y. (2019) Multi-Attribute Decision Making Method Based on Pythagorean Fuzzy Frank Operator. Journal of Computer Applications, 39, 316-322.
[15]  杜玉琴, 侯福均, 翟玉冰, 于倩. Pythagorean三角模糊语言Hamacher集结算子及其应用[J], 运筹与管理, 2018, 27(3): 104-112.
[16]  Abdullah, L., Rosanisah, W. and Mohd, W. (2019) Pythagorean Fuzzy Hamacher Choquet Integral Oper-ators and Their Application to Multi-Criteria Decision Making. Journal of Intelligent & Fuzzy Systems, 37, 1259-1274.
https://doi.org/10.3233/JIFS-182704
[17]  Beliakov, G., Pradera, A. and Calvo, T. (2007) Aggregation Functions: A Guide for Practitioners. Springer, Berlin.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133